Chair Dances Like No One Is Watching

Although it might be more accurate to say that this chair dances because no one is watching, the result is still a clever project that [Igor], a maker-in-residence at the National Museum of Decorative Arts and Design in Norway, created recently. Blurring the lines between art, hack, and the ghosts from Super Mario, this chair uses an impressive array of features to “dance”, but only if no one is looking at it.

In order to get the chair to appear to dance, [Igor] added servo motors in all four legs to allow them to bend. A small non-moving dowel was placed on the inside of the leg to keep the chair from falling over during all of the action. It’s small enough that it’s not immediately noticeable from a distance, which helps maintain the illusion of a dancing chair.

From there, a Raspberry Pi 3 serves as the control center for the chair. It’s programmed in Python and runs OpenCV for face detection and uses pigpio for controlling the leg servos. There’s also a web interface for watching the camera’s output and viewing its facial recognition abilities. The web interface also allows a user to debug the program. [Igor]’s chair can process up to 3 frames per second at 800×600 pixels.

Be sure to check out the video after the break to see the chair in action. It’s an interesting piece of art, and if those dowels can support the weight of a person it would be a great addition to any home as well. If it’s not enough chair for you, though, there are some other more dangerous options out there.

Continue reading “Chair Dances Like No One Is Watching”

Pikachu is coming for you (especially on carpet)

If you look closely, you’ll see that Pikachu isn’t sporting a pair of funky throwing stars, but is actually suspended between there. Our furry friend is just putting a happy face on this carpet roving robot called the Carpet Monkey V5. It’s been in the works for years, and this is just one more stop in the prototyping process as the development of version 6 is already under way.

The project is a testament to what can be accomplished using all of the design tools at your disposal. The motive mechanism was conceived as a cross between the qualities of legs and the ease of using wheels. Each of the appendages are covered with strategically placed points meant to grab onto carpet, and allow the ‘wheel’ to grip objects as the machine vaults over them. You can see that each has a spring mechanism to further facilitate gripping with each turn of the axle. This seems to go far beyond what usually comes out of hobby robotics, and we think that’s a great thing!

After the break there’s a video showing how all the parts of these grippers are assembled. See the bot cruising around the room at about 3 minutes in.

Continue reading “Pikachu is coming for you (especially on carpet)”

Inventing robot athletes

The human body is an amazing instrument from an engineering standpoint. Replicating just one part of it proves extremely difficult but these athletic legs show a lot of promise. This is the work of a Japanese researcher named [Ryuma Niiyama]. He’s been working on the design for years, and is now using pneumatic actuators to mimic the muscles in a human leg. The lower portion of the leg uses a spring mechanism that resembles some running prosthetics currently in use. These serve as a spring to store energy and reuse it by bouncing against the ground. He’s trying to teach his robot to use these legs; taking it through a learning process necessary to use the thigh actuators for locomotion and balance. We were surprised at how life-like the motion in the video after the break is. Even when falling down the movements are very life-like.  We thought the movements of Little Dog were real enough to be creepy, and this robot may be close enough to our own mannerisms to fall into the uncanny valley.

Continue reading “Inventing robot athletes”