A LEGO Camera You Just Might Own Yourself

A camera makes for an interesting build for anyone, because it’s an extremely accessible technology that can be made from materials as simple as cardboard. More robust cameras often require significant work, but what if you could make a usable camera from LEGO? It’s a project taken on by [Zung92], who hasn’t simply made a working 35 mm camera from everyone’s favorite construction toy — he’s also managed to make it exude retro style. Best of all, you can vote for it on the LEGO Ideas website, and you might even get the chance to have one for yourself.

Frustratingly there’s little in the way of in-depth technical detail on the Ideas website, but he does mention that it was a challenge to make it light proof. Even the lens is a LEGO part, and if diffraction-based photography isn’t for you there’s also a pinhole option. We look forward to seeing this camera progress, and we hope we’ll see it advance to becoming a LEGO Ideas kit.

This is an extremely polished design, but surprisingly, it’s not our first LEGO camera.

Thanks [Michael] for the tip.

Working Artificial Horizon Built Into A Single LEGO Brick

Back in the day, LEGO spaceship sets used to come with these little wedge blocks painted with fake gauges on them. [James “Ancient” Brown] decided that wasn’t good enough. Thus, he took everything he needed for a functional artificial horizon, and stuffed it inside a single LEGO brick. Yes, it’s real, and it’s spectacular.

We featured [James’] electronics-infused bricks some time ago when they first hit the Internet. The basic story is that he managed to cram an OLED screen and an RP2040 into a silicone mold for a LEGO-compatible brick. His first iterations stunned the world, as they ran pretty monochrome animations that brought life to formerly-inanimate chunk of plastic.

Since then, [James] has been busy. He’s managed to squeeze an accelerometer into the brick form factor as well. That allowed him to build a LEGO piece which displays an impressively-smooth artificial horizon display, as you might find in an aircraft. He demonstrates this by putting the instrument on a LEGO craft and zooming it around the room. All the while, the artificial horizon accurately tracks the motions of the craft.

It’s an impressive build, and something we’d love to see included in future LEGO vehicles…even if they’re just 3D renders. Continue reading “Working Artificial Horizon Built Into A Single LEGO Brick”

DOOM Ported To A Single LEGO Brick

By now you’ve all seen the tiny LEGO brick with a working screen in it. The work of one [James “Ancient” Brown], it was truly a masterpiece of miniaturization and creativity. Since then, [James] hasn’t stopped innovating. Now, he’s demoing a playable version of DOOM running on a single plastic brick.

We’ve covered the construction of these astounding screen bricks before. Long story short, [James] designed a tiny PCB that hosts an RP2040 microcontroller which is then hooked up to a tiny OLED screen. The components are placed in a silicone mold, which is then filled with transparent resin to form the brick. The screen is then powered via contacts in the bottom, much like older-style LEGO motors.

Early experiments involved running various graphics to emulate a spaceship dashboard, but [James] has now gone much further. He’s implemented RP2040-doom to run the game. It uses tilt controls thanks to an accelerometer, combined with capacitive touch controls for shooting. The monochrome OLED is driven very fast with a special library of [James’] own creation to create three levels of grayscale to make the game actually visible and (just barely) playable.

It’s a hack, of course, and the controls are far from perfect. Nobody’s speed-running E1M1 on [James’s] LEGO brick, to be sure. Perchance. With that said, it’s still a glorious piece of work nonetheless. Just imagine, sitting with friends, and announcing you’re going to play some DOOM — only to pluck a piece of LEGO out of your pocket and start blasting away at demons.

Just because [James] doesn’t know when to quit, we’re going to lay down the gauntlet. Let’s get network play happening on these things, yeah?
Continue reading DOOM Ported To A Single LEGO Brick”

Domino Ring Machine Tips Tiles In A Never-ending Wave

Like to see dominoes fall? [JK Brickworks] has got what you need, in the form of a never-ending ring of falling and resetting tiles. LEGO pieces are the star in this assembly, which uses a circular track and moving ramp to reset tiles after they have fallen. Timed just right, it’s like watching a kinetic sculpture harmoniously generating a soliton wave as tiles fall only to be endlessly reset in time to fall again.

A Mindstorms IR sensor monitors a tile’s state for timing.

It’s true that these chunky tiles aren’t actually dominoes — not only are they made from LEGO pieces and hinged to their bases, they have a small peg to assist with the reset mechanism. [JK Brickworks] acknowledges that this does stretch the definition of “dominos”, but if you’re willing to look past that, it’s sure fun to see the whole assembly in action.

The central hub in particular is a thing of beauty. For speed control, an IR sensor monitors a single domino’s up/down state and a LEGO Mindstorms EV3 with two large motors takes care of automation.

The video does a great job of showing the whole design process, especially the refinements and tweaks, that demonstrate the truly fun part of prototyping. [JK Brickworks] suggests turning on subtitles for some added details and technical commentary, but if you’re in a hurry skip directly to 4:55 to see it in action.

Want to see more automated domino action? This domino-laying robot sets them up for you to knock down at your leisure, and this entirely different robot lays out big (and we do mean BIG) domino art displays.

Continue reading “Domino Ring Machine Tips Tiles In A Never-ending Wave”

An image of a Modulex brick (left) next to a LEGO brick right. Both are 4x2 studs, but the Modulex brick is much smaller at 20x10x5 mm vs the LEGO's 32x16x9.6 mm.

Modulex Is LEGO’s Long Lost Cousin

We love LEGO here at Hackaday, but did you know that LEGO spun off a parallel product line made for architectural models called Modulex?

[Peter Dibble] takes us on a deep dive through the history of Modulex, starting with Godtfred Kirk Christiansen needing a better way to model actual buildings after trying to design a house in LEGO. The LEGO brick’s 5:5:6 ratio proved challenging for modeling full-sized projects, so Modulex was conceived around a 1:1:1 ratio 5 mm cube. This change means Modulex is not compatible with LEGO System bricks.

As architectural styles morphed through the mid-20th Century, designs based around blocky shapes became passe, and Modulex pivoted to targeting factory and city planning customers. Products later branched out to include wall charts and Plancopy photocopy-able planners along with reconfigurable signage. Modulex (now ASI) still goes on as one of the biggest signage companies in the world, but discontinued the bricks in 2004. An attempt was made to revive Modulex bricks in 2015, but LEGO Group bought the company that had the rights to the bricks and has no intention of producing Modulex.

For more LEGO hacks, checkout this machine learning LEGO sorter or these giant LEGO-like pieces.

Continue reading “Modulex Is LEGO’s Long Lost Cousin”

Lego Guitar Is Really An Ultrasonically-Controlled Synth

The phrase “Lego Guitar” can be a stressful one to hear. You might imagine the idea of strings under tension and a subsequently exploding cloud of plastic shrapnel. This build from the [Brick Experiment Channel] eschews all that, thankfully, and is instead a digital synth that only emulates a guitar in its rough form factor.

The heart of the build is a Lego Mindstorms EV3 controller. It’s acts as the “body” of the guitar, and is fitted with a Lego “fretboard” of sorts. A slide is moved up and down the fretboard by the player. The EV3 controller detects the position of the slide via an ultrasonic sensor, and uses this to determine the fret the user is trying to play. The button the user presses on the controller then determines which of five “strings” the user is playing, and the selected note is sounded out from the EV3’s internal speaker. It’s strictly a monophonic instrument, but three different sounds are available: a bass guitar, a rock guitar, and a solo guitar, with all the fidelity and timbre of a 90s Casio keyboard.

It’s a fun and silly instrument, and also kind of difficult to play. The slide mechanism doesn’t offer much feedback, nor are the EV3 buttons intended for dynamic musical performance. Regardless, the player belts out some basic tunes to demonstrate the concept. We doubt you’d ever be able to play Through The Fire and Flames on such a limited instrument, but [Brick Experiment Channel] used their editing skills to explore what that might sound like regardless.

We’ve seen some other great synth guitars before, too. Modern microcontrollers and electronics give makers all kinds of creative ways to build electronic instruments with unique and compelling interfaces. Some are more successful than others, but they’re all fun to explore. Video after the break.

Continue reading “Lego Guitar Is Really An Ultrasonically-Controlled Synth”

A Simple Air Suspension Demo With Lego Technic

The most common suspension systems on automobiles rely on simple metal springs. Leaf spring and coil spring designs both have their pros and cons, but fundamentally it’s all about flexing metal doing the work. Air suspension works altogether differently, employing gas as a spring, as demonstrated by this simple Lego build from [JBRIX]. 

The suspension system is employed on a Lego Technic car, with a relatively unsophisticated design. The car has no real form of propusion, and serves solely to demonstrate the air suspension design. They may look like dampers, but the system is actually using Lego pneumatic pistons as springs for each wheel. The pistons are connected to the upper control arm of a double wishbone suspension setup. Each piston is pneumatically connected to a main reservoir. With the reservoir, and thus the pistons, pressurized, the suspension system can support the weight of the car. If a bump perturbs a wheel, the piston compresses the air in the system, which then returns the piston to its original position, thus serving as a spring. If the reservoir is vented, the suspension collapses. Air springs on real, full-sized automobiles work in basically the same way. However, they usually have a separate reservoir per corner, keeping each wheel’s suspension independent.

Overall, if you’re working on some kind of Lego rambler, you might find this suspension concept useful. Alternatively, you might simply find it good as a learning aid. If you want to learn more about oddball suspension systems, we can help there too. Video after the break.

Continue reading “A Simple Air Suspension Demo With Lego Technic”