Let’s Blow Up an Explosive Lightning Arrestor

Lightning is some nasty stuff. Luckily, it doesn’t have a very long lifespan. [BigClive] decided to tear down an 11KV lighting arrestor used in power distribution systems. The fiberglass core has silicone rubber water-shedding disks that make the unit look sort of floppy, but inside is some serious hardware.

To protect the circuit, metal oxide varistors shunt high voltage from a lightning strike to ground as you’d expect. The interesting part is how the device deals with failure. It would be a disaster if the device shorted the 11KV power line to ground for any length of time due to a fault. To prevent that problem, a resistor heats up when struck by lightning and triggers an explosive charge that disconnects the ground wire and releases a flag to indicate the failure.

[BigClive] triggered the charge in the video below. So if you like to see things explode in a bucket of water, you’ll enjoy the video.

Continue reading “Let’s Blow Up an Explosive Lightning Arrestor”

Reverse Engineering Apple’s Lightning Connector

Introduced with the iPhone 5 nearly two and a half years ago, Apple’s Lightning connector has stymied the incredible homebrew electronics scene that was previously accustomed to the larger, older, better documented, and more open 30-pin connector. Now, finally, the protocols inside the Apple Lightning connector have been broken. We’re still a ways off from a Lightning breakout board, but this is the first proof that a serial console can be obtained through a Lightning connector. That’s the first step to totally owning an iDevice, and this is how all those exploits will start.

[Ramtin Amin] began the teardown of the Lightning connector began as most reverse engineering tasks should – looking at the patents, finding a source for the connectors, and any other products that use similar hardware. [Ramtin] found a Lightning to Serial converter powered by an STM32 microcontroller. Disassembling the firmware and looking at the output on a logic analyzer, [Ramtin] figured out part of the protocol, most of the wiring, and after some research, schematics for how an until-now unidentified chip in Lightning-enabled iProducts was wired.

The chip in question is colloquially known as the Tristar, and more accurately as a CBTL1608A1. During the teardown craze of the iPhone 5 launch, this chip was frequently identified as a DisplayPort Multiplexer. It is a mux, but not for DisplayPort – it’s only to connect the accessory (Lightning) UART, debug UART, baseband, SoC, and JTAG. This is the key to the castle, and being able to get through this chip means we can now own our iDevices.

The chip is an incredibly small BGA affair that [Ramtin] desoldered, reflowed onto a breakout board, and connected to an STM32 Discovery board. Using the techniques he used with other Lightning-enabled hardware, [Ramtin] was able to connect his iPhone and ever so slightly peek his head into the inner workings of his device.

It’s not complete control of an iDevice yet, but this is how all those future exploits will start. [Ramtin] uploaded a short video as a proof of concept, you can check that out below.

Continue reading “Reverse Engineering Apple’s Lightning Connector”

Putting Lightning In Acrylic

Some folks at the i3Detroit hackerspace had an opportunity come up that would allow them to capture lightning in acrylic. They created a few Lichtenberg figures thanks to the help of a plastic tubing manufacturer, some lead sheet and a bunch of 1/2″ thick acrylic.

Lichtenberg figures are the 3D electrical trees found in paperweights the world over. They’re created through electrical discharge through an insulator, with lightning being the most impressive Lichtenberg figure anyone has ever seen. These figures can be formed in smaller objet d’art, the only necessity being a huge quantity of electrons pumped into the insulator.

This was found at Mercury Plastics’ Neo-Beam facility, a 5MeV electron accelerator that’s usually used to deliver energy for molecular cross linking in PEX tubing to enhance chemical resistance. For one day, some of the folks at i3Detroit were able to take over the line, shuffling a thousand or so acrylic parts through the machine to create Lichtenberg figures.

When the acrylic goes through the electron accelerator, they’re loaded up with a charge trapped inside. A quick mechanical shock discharges the acrylic, creating beautiful tree-like figures embedded in the plastic. There are a lot of pictures of the finished figures in a gallery, but if you want to see something really cool, a lead-shielded GoPro was also run through the electron accelerator. You can check out that video below.

Continue reading “Putting Lightning In Acrylic”

100% DIY Intervalometer is 100% Awesome

It’s easy to tell from this process documentary that [Nagyizee] is not one to settle for prefabricated anything. He could have just bought some off-the-shelf DSLR intervalometer, but that would mean interfacing with someone else’s design through cold, soulless plastic.

[Nagyizee] wanted a one-of-a-kind tool built from the ground up. In addition to a timer, he was in the market for a light sensor and sound detection. He chose an STM32F100 ARM Cortex M3 running at 8MHz in the name of power efficiency and started designing the UI and firmware. A custom graphic library for the OLED display streamlines it even further. Once the schematic was finalized, [Nagyizee] devised a stylish and ergonomic wooden case to be milled with a tiny Proxxon F70.

With the enclosure decisions out of the way, he etched and drilled the PCB and placed the components. The light sensor needed a lens and a prism, so he made one from a 10mm LED body. Not one to miss a detail, [Nagyizee] also turned some buttons, hand painted them, and made a scroll wheel. He ends the video with a demonstration that proves it is quite capable. In addition to standard cable release mode, it handles long exposure times, sequential shooting, and capture on light, shadow, or sound. But wait, there’s more: [Nagyizee]’s creation combines modes with ease and grace.

Continue reading “100% DIY Intervalometer is 100% Awesome”

A Cloud Of Lightning Detectors


Here’s an interesting project to plot every lightning strike on Earth. Blitzortung is a project that uses many extremely low-cost sensor boards packed with an amplifier, microcontroller, and an Ethernet socket to detect lightning strikes. When multiple stations send all that data up to a server, the location of lightning strikes can be calculated, even if they’re hundreds of miles away from any station.

Each station works by detecting a change in the local EM field caused by a lightning strike with either a large loop antenna or a smaller ferrite core antenna. These signals can be amplified and turned into usable data, time stamped, and sent out on the Internet. From there, it’s a simple time of flight calculation to precisely locate where lightning strikes.

The hardware is actually pretty simple, with based on an STM32F4 Discovery board. A controller includes an Ethernet port, GPS unit, LCD, and all the hardware associated with detecting lightning strikes.

If you’d like to see what’s possible with a huge network of lightning detectors connected to the Internet you can check out LightningMaps for a look at what’s possible.

Thanks [Sean] for sending this in.

Electron Tree Bridal gifts


[Mark] just sent us in this fascinating example of Lichtenberg Figures, or more commonly known as Captured Lightning.

He just got married yesterday to his beautiful wife [Charlie] and they wanted to do something different for their bridal party. They chose to capture lightning inside acrylic spheres. Quite an impressive gift if we do say so ourselves!

The funny thing is, I was just reading [Theo Gray’s] Mad Science book which explains this phenomena. These Lichtenberg Figures are created by blasting a beam of high energy electrons at a piece of acrylic. Many of the electrons get trapped inside the acrylic and form a plane of charge. When the acrylic object gets struck with a grounding  stud, a discharge path is formed and all the electrons escape, leaving a completely unique lightning-like path in their tracks.

Unfortunately to make these you’re going to need a linear accelerator; a very expensive machine that [Mark] was lucky enough to use through his work. However the couple didn’t stop there, they also designed the lighted base using a PIC12F1501 micro-controller to finish off the gifts!

See how they were made after the break! Just a heads up, the video is very loud when the electrons are fired! If you’re wearing headphones keep the volume low.

Continue reading “Electron Tree Bridal gifts”

What’s inside a lightning arrestor?

What is inside one of those things? The folks over at Northstreetlabs have set out to answer just that question. You’ve seen these things before, and if you’re uneducated on the subject like myself, you just assumed they were there to stop a possible connection from a power line to the pole/building to which it is attached. Apparently that is part of their purpose. When presented with lightning, however, they turn to conductors allowing the lightning to pass to ground.

You can see their teardown in video form, as well as an explanation of how exactly they work on their site.