How’d They Do It: Levitating Orb Clock

It’s time for everyone’s favorite game: speculative engineering! An anonymous reader wrote to our tips line asking how the levitation system of the STORY clock is accomplished. We took a look and can tell you right now… that’s a really good question!

STORY: The Levitating Timepiece has more than a month left on its crowdfunding campaign but it’s reached more than 6x its $80k goal. The wooden disk has a digital time display in the center which is simply an LED matrix just below the wood’s surface. We know how that’s done: wooden veneer with a grid of holes behind to contain the LED light in a perfect circle. Continue reading “How’d They Do It: Levitating Orb Clock”

Maglev Drummer Needs to Be Seen and Heard

Sometimes Hackaday runs in closed-loop mode: one hacker makes something, we post it, another hacker sees it and makes something else, and we post it, spiraling upward to cooler and cooler hacks. This is one of those times.

One of our favorite junk-sound-artists and musical magicians, [Gijs Gieskes], made this magnetic-levitation, rubber-band, percussive zither thing after seeing our coverage of another magnetic levitation trick. Both of them simply have a Hall sensor controlling a coil, which suspends a magnet in mid-air. It’s a dead-simple circuit that we’ll probably try out as soon as we stop typing.

But [Gijs] took the idea and ran with it. What looks like a paperclip dangles off the magnets, and flails wildly around with its tiny steel arms. These hit a zither made of rubber bands with a bamboo skewer as a bridge, pressing down on a piezo. The rest is cardboard, copper-clad, and some ingenuity. Watch it work in the video embedded below.

Continue reading “Maglev Drummer Needs to Be Seen and Heard”

Easy Toy Hack Makes Floating Death Star

It always seems odd to us that magnetic levitation seems to only find use in big projects (like trains) and in toys. Surely there’s a practical application that fits on our desktop. This isn’t it, but it is a cool way to turn a cheesy-looking levitating globe into a pretty cool Star Wars desk toy.

As projects go, this isn’t especially technically challenging, but it is a great example of taking something off the shelf and hacking it into something else. The globe covering came off, revealing two hemispheres. A circular hole cut out and inverted provides the main weapon. Some internal lighting and small holes provide light. Some fiber optic sanded and tinted green make the weapon fire. The rest is all in the painting.

There’s even a tiny imperial ship orbiting the killer man-made (or is that Sith-made) moon. If you want a bigger challenge, you might try bamboo. Or you can go minimalist and let your eyes and brain do most of the work.

Continue reading “Easy Toy Hack Makes Floating Death Star”

Mag Lev Without The Train (But With An FPGA)

It always surprises us that magnetic levitation seems to have two main purposes: trains and toys. It is reasonably inexpensive to get floating Bluetooth speakers, globes, or just floating platforms for display. The idea is reasonably simple, especially if you only care about levitation in two dimensions. You let an electromagnet pull the levitating object (which is, of course, ferrous). A sensor detects when the object is at a certain height and shuts off the magnet. The object falls, which turns the magnet back on, repeating the process. If you do it right, the object will reach equilibrium and hover near the sensor.

Some students at Cornell University decided to implement the control loop to produce levitation using an Altera FPGA. An inductive sensor determined the position of an iron ball. The device uses a standard proportional integral derivative (PID) control loop. The control loop and PWM generation occur in the FPGA hardware. You can see a video of their result, below.

Continue reading “Mag Lev Without The Train (But With An FPGA)”

Magnetic Levitation with Arduino

Getting a magnetic field to balance on another magnetic field is about as easy as balancing a bowling ball on the tip of an ink pen. With a little help from an Arduino mega, however, [EmmaSong] was able to balance a high density neodymium magnet in midair. He pulled off this tricky project using a set of four coils he got off of Taobao (the Chinese version of eBay), a hall effect sensor, and a handful of current regulation ICs.

The coils can be made in house if necessary, with each winding getting about 800 turns of enameled wire. The rest of the circuit is straightforward. It appears he uses a potentiometer for a rough regulation of the current going to the coils, doing the fine tuning in the code which can be found here (.RAR direct download).

We’ve seen magnetic levitation here before, and this project adds to the list of successful techniques to accomplish this difficult project.

Continue reading “Magnetic Levitation with Arduino”

Maglev, Submersibles, and More at Maker Faire Detroit

This past weekend the Maker Faire returned to the motor city. While it seemed a bit smaller than previous years, the event still brought in a ton of awesome makers from the metro Detroit area and beyond.

img_8517

Although we don’t feature too many woodworking projects, there were quite a few woodworkers at the Faire with projects ranging from custom longboards pressed with a home built iron mold to DIY kayaks with elaborate wooden skeletons built by a local group of Michigan kayak builders. The kayaks were quite impressive: hand sewn nylon panels are wrapped around custom frames made from steamed white oak. It’s great to speak with the makers about the specialized skills needed for kayak building.

Continue reading “Maglev, Submersibles, and More at Maker Faire Detroit”

Building A Magnetic Levitating Quadcopter

hover Three days ago on October 21, 2014 it was announced to the world the Back to the Future hoverboard was real. It’s a Kickstarter, of course, and it’s trending towards a $5 Million dollar payday for the creator.  Surprisingly for a project with this much marketing genius, it’s a real, existing device and there’s even a patent. From the patent, we’re able to glean a few details of how this hoverboard/magnetic levitation device works, and in our post on the initial coverage, we said we’d be giving away some goodies to the first person who can clone this magnetic levitation device and put it up on hackaday.io.

[jellmeister] just won the prize. It’s somewhat cheating, as he’s had his prototype hoverboard working in July, and demoed a more advanced ‘upside-down quadcopter’ device at the Brighton Mini Maker Faire in September. Good on ‘ya [jelly]. You’re getting a gift card for the hackaday store.

hoverLike the Kickstarter hoverboard, [jelly] is using an array of magnets rotating in a frame above a non-ferrous metal. For the initial test, eight neodymium magnets were arranged in a frame, suspended over 3/4″ aluminum plate, and spun up with a drill. With just this simple test, [jelly] was able to achieve 2kg of lift at 1cm and 1kg of lift at 1 inch of separation. This test also provided some valuable insight on what the magnets do to the aluminum or copper; the 3kg aluminum plate was nearly spinning, meaning if this device were to be used on small plates, counter-rotating pairs of magnetic lifters would need to be used.

The test rig then advanced to two pairs of rotors with standard hobby brushless motors, but stability was a problem; the magnetic rotors provided enough lift, but it would quickly fall over. To solve this problem, [jellmeister] took a standard quadcopter configuration, replaced the props with magnetic rotors, and successfully hovered it above a sheet of aluminum at the Brighton Maker Faire.

Since [jellmeister] has actually built one of these magnetically levitating hoverboards, he has a lot more data about how they work than an embargoed press release. The magnetic rotor hoverboard will work on aluminum as well as copper, but [jell] suspects the Kickstarter hoverboard may be operating right at the edge of its performance, necessitating the more efficient copper half pipe. The thickness of the non-ferrous plate also makes a difference, with better performance found using thicker plates. No, you bojo, hoverboards don’t work on salt water, even if you have pow-ah.

So there ‘ya go. That’s how you build a freakin’ hoverboard. [jellmeister]’s design is a little crude and using a Halbach array for the magnetic rotors should improve efficiency. Using a 3D printed rotor design is a stroke of genius, and we’ll expect a few more quad-magnetic-levitating-things to hit the tip line in short order.

Demos of [jellmeister]’s work below.

Oh. These things need a name. I humbly submit the term ‘Bojo’ to refer to any device that levitates though rotating magnets and eddy currents.

Continue reading “Building A Magnetic Levitating Quadcopter”