Building One Thing In China

Conventional wisdom dictates that if you need to make a million of something, you go to China. China is all about manufacturing, and there aren’t many other places on the planet that have the industry and government-subsidized shipping that will bring your product from China to people around the world. Building a million things in China is one thing, but what about building one thing? How do you create a working prototype of your latest product, and how do you make that prototype look like something that isn’t held together with zip ties and hot glue? The folks at Hatch Manufacturing have a guide for doing just that, and lucky for us, it’s a process that’s easy to replicate in any well-equipped shop.

In this tutorial/case study/PR blitz, Hatch Manufacturing takes on constructing a one-off smartphone. The Huaqiangbei markets in Shenzhen are filled with vendors selling smartphones of all shapes and sizes. If you want a miniature iPhone running Android, that’s no problem. If you want a phone that looks like a 1969 Dodge Charger with the Stars and Bars on top, you can find it in China. But how are all these phones made, and how do you show off a prototype to factories begging for business?

The answer, as is always the case, comes from one-off manufacturing. Building, assembling and reworking PCBs is a well-trodden path whose process could fill several volumes, but for this post, Hatch Manufacturing decided to focus on the plastics that go into a smartphone or tablet.

Once the case or enclosure is designed with a few CAD tools, a block of plastic is run through a mill. After that, it’s a matter of painting and finishing the latest smartphone that will show up in the Chinese market. Putting a professional finish on a block of plastic is something that will look familiar to anyone who has ever assembled a miniature plastic model. There’s priming, airbrushing, sanding, more painting, sanding, wet sanding, and still more sanding. After that comes polishing the plastic part to a fine finish. It is extraordinarily labor intensive work even for a skilled hand with the right equipment.

Once the plastics are done, the PCB, display, battery, and everything else comes together in a completely custom one-off prototype. It’s very similar to how this would be done in any small shop with a benchtop mill and a dozen grades of wet/dry sandpaper. It’s also something anyone can do, provided they have enough practice and patience.

What’s in a tool? A case for Made in USA.

A lot of people make the argument that you can’t go wrong buying a tool made in USA, Germany, Japan, Switzerland, etc. They swear that any Chinese tool will be garbage and it’s not worth purchasing them. Now, any discerning mind will say, “Wait a minute, why? China has a huge economy, experienced people, and the ability to use all the scary chemicals that make the best steel. Why would their tools be any better or worse than ours?” It’s a very valid argument. There are lots of Chinese tools that are the best in the world. Most of what we see in our stores are not. So what is the difference. Why does a country who can make the best tools not make the best tools? Surely it isn’t purely cost cutting. Is it cultural? The opinion I wish to put forth is that it’s a matter of design intent communication.

I’ve worked as an engineer in industry. The one common thread between a quality product and a bad product has always been this, ”Is the person who designed the product involved in making the product?” If the person or peoples who imbued the design intent into the original product are actively involved in and working towards the execution of that product, that product has a vastly greater chance of being good. Or in other words: outsourcing doesn’t produce a bad product because the new people making the product don’t care. It makes a bad product because the people who understand the intent behind the product are separated from its execution.

As you can see the export made crescent wrench is not made to the same tolerances as the previous wrench.
As you can see the export made crescent wrench is not made to the same tolerances as the previous wrench.

Let’s take the Crescent wrench as an example. Crescent wrenches used to be made in USA. In the past few years they have begun to make them in China. We can spot many visual differences right away. The new Crescent wrench has a different shape, the logo has changed and the stamping for the logo is dodgy, and worse, the tool just doesn’t operate as well as it used to. The jaws aren’t as hard and they wiggle more. What happened? How could Crescent mess up their flagship so badly. Surely they intended just to cut costs, not to reduce quality. This isn’t shameful in itself

What happened to the Crescent wrench is easily explained by anyone who has seen a product from design to execution before. A factory in the USA set out to make a good adjustable wrench. Hundreds of engineers and employees worked in a building to make a good wrench. When their machines didn’t work, they came up with solutions. When their quality was lacking, they implemented better processes. They had a list of trusted suppliers. They could guarantee that the materials that came in would be imbued with their vision and intent when the product came out. The intent and will of all those people built up in one place over time.

Continue reading “What’s in a tool? A case for Made in USA.”

25 Years of Hardware Manufacturing in Plovdiv

Plovdiv, Bulgaria has a long history of design and innovation going back at least 6000 years to cultures like the Thracians, Celts, and Romans. In the last decade it is also an important center for open hardware innovation — reviving the lost glory of the computer hardware industry from the former “Soviet bloc countries”. One of the companies in the region that has thrived is a 5000 square-meter microelectronics factory which you may have heard of before: Olimex.

Olimex has over 25 years of experience in designing, prototyping, and manufacturing printed circuit boards, components, and complete electronic products. Over the last decade it has evolved into a shining example of an open hardware company. We recently had the chance to visited Olimex and to meet its CEO, Tsvetan Usunov.

Continue reading “25 Years of Hardware Manufacturing in Plovdiv”

Robotic Tabletop

Remember pin art? That’s the little box full of pins that you can push something into and the pins take on the shape. You usually use your hand, but any small object works (including, if you are brave enough, your face). [Sean Follmer] (formerly at the MIT Media Lab) developed the reverse of this: a surface made of pins driven by motors. Under computer control, the surface can take on shapes all by itself.

The square pins can be seen in the video below moving and manipulating blocks and using them to build structures out of the blocks. By using the right sequence of pin motions, the blocks can be flipped and even stacked. Magnetic blocks offer even more options.

Continue reading “Robotic Tabletop”

Arduino.cc Expands European Manufacturing

Maker Faire Rome is over, and that means it’s time for the Arduino media blitz. Arduino has already had a big announcement this week with the introduction of the Arduino / Genuino 101 board powered by the Intel Curie module. Team .cc hasn’t forgotten all their Atmel-powered boards though. The latest news is that Arduinos will be manufactured in Germany by Watterott Electronics (.de, Google Translate).

Right now, Arduino.cc boards are manufactured in China by Seeed, and in the US by Adafruit and Sparkfun. Watterott Electronics is one of the premier hobby electronics distributors in Germany.

Boards made by Watterott will carry the Genuino mark; Arduino.cc seems to anticipate a loss in the Arduino vs. Arduino trademark dispute outside the US. All boards produced under license from Arduino.cc sold outside the US will carry the Genuino trademark, whereas boards produced for the US market will carry the Arduino trademark. Interestingly, this Arduino vs. Arduino split began with a former manufacturer, with a maelstrom of pettiness stemming from that trademark dispute. In any case, the licensing for boards manufactured by Watterott is most assuredly worked out by now. The new manufacturing partner guarantees a greater supply of Arduinos for all.

[Bunnie Huang’s] Hardware Talks Top Your Watch List

When [Bunnie] talks, we listen. He is a fount of product engineering knowledge, having seen many of his own products through from concept to market, and frequently helping others do the same. Of course having the knowledge is one thing, but he is also an accomplished speaker who knows what is important and how to share it in a way which is meaningful to others. The latest example of this is a pair of Engineering Talks he gave at Highway 1.

It’ll take you less than twenty minutes to get through the two videos. The first focuses on documentation for manufacturing. What do you need to include on a bill of materials sent to the factory? [Bunnie] has a set of gotchas which illustrate how vital this is. He also discusses how to handle design changes once the manufacturing wheels are already in motion. The second clip covers how Design for Manufacture relates to the actual cost of a production run. We hope there are more of these clips in the publishing pipeline so we’re keeping our eye on this channel.

The two videos are embedded below and at the time of writing had just a couple dozen views each and only one comment between the two of them. It seems sacrilege to say this, but we agree with that YouTube comment; these videos are gold.

Want to check out one of [Bunnie’s] latest projects? It’s a radio-based interactive badge.

Continue reading “[Bunnie Huang’s] Hardware Talks Top Your Watch List”

Why are You Still Making PCBs?

Few things have had the impact on electronics that printed circuit boards (PCBs) have had. Cheap consumer electronics would not be as cheap if someone still had to wire everything (although by now we’d be seeing wiring robots, I’m sure). Between removing the human from the wiring process and providing many excellent electrical properties (at least, on a well-designed board), it isn’t surprising that even the cheapest examples of electronics now use PCBs.

For many years, the hallmark of being a big-time electronic hacker was the ability to make your own PCBs. There have been many ways that people have tried to bring PCB manufacturing into the hacker’s garage: stick on decals, light-sensitive blank PCBs, and even using laser printer toner (that last one spurred me to write a book on PCB layout many years back). You also see a lot of people using 3D printers or CNC mills to create PCBs. Hardly a week goes by that someone doesn’t ask me how to make a PCB in a home or small business lab.

Continue reading “Why are You Still Making PCBs?”