Haunted Dollhouse Microcontroller Networking for World Maker Faire

master-slave-networks

It’s pretty awesome to get see the number of projects presented at World Maker Faire. But we still love digging into the gritty details that only an in-depth build post can deliver. Here we get both. You can see the circuits pictured above in the Circuit Castle exhibit at WMF this weekend, and you can read about how the microcontroller network was built in [Jim’s] article.

As the title states, this is a network built for a dollhouse. Each slave device performs a different task; adding color, sound, motion, and interactivity using some sensors.  The post discusses the i2c (or TWI to get around licensing issues as [Jim] mentions) communications used to talk to the ATtiny85 chips on the slave boards. Because the eight-pin package leaves few I/O pins to work with an ATtiny84 was also added. It brings 14-pins to the party, including multiple ADC inputs for reading sensors.

If this ends up being too much of a read for you jog to the “Update 9/17/13″ to get the general overview of progress. Like any project on a timeline, not everything works quite as well as they would have liked it to. But it’s the journey that makes something like this so fun — a fully working project would signal an end to the enjoyment, right?

[via Workshop 88]

Master clock system uses all logic, no microcontrollers

What you see above is a master clock. It is the center of a system that can run an unlimited number of slave clocks, keeping them on-time thanks to its ability to synchronize with an atomic clock. [Brett Oliver] put together the project back in 2005 using digital logic chips, and no programmable microcontrollers. This includes everything from the binary decoders that drive the 7-segment displays, to the radio transceiver board that gathers the atomic clock data, to the various dividers that output 1 second, 2 second, 30 second, 1 minute, 1 hour, and 24 hour signal pulses. It’s  a well document and fascinating read if you’re interested in digital logic clocks.