Ball Run Gets Custom Sound Effects

Building a marble run has long been on my project list, but now I’m going to have to revise that plan. In addition to building an interesting track for the orbs to traverse, [Jack Atherton] added custom sound effects triggered by the marble.

I ran into [Jack] at Stanford University’s Center for Computer Research in Music and Acoustics booth at Maker Faire. That’s a mouthful, so they usually go with the acronym CCRMA. In addition to his project there were numerous others on display and all have a brief write-up for your enjoyment.

[Jack] calls his project Leap the Dips which is the same name as the roller coaster the track was modeled after. This is the first I’ve heard of laying out a rolling ball sculpture track by following an amusement park ride, but it makes a lot of sense since the engineering for keeping the ball rolling has already been done. After bending the heavy gauge wire [Jack] secured it in place with lead-free solder and a blowtorch.

As mentioned, the project didn’t stop there. He added four piezo elements which are monitored by an Arduino board. Each is at a particularly extreme dip in the track which makes it easy to detect the marble rolling past. The USB connection to the computer allows the Arduino to trigger a MaxMSP patch to play back the sound effects.

For the demonstration, Faire goers wear headphones while letting the balls roll, but in the video below [Jack] let me plug in directly to the headphone port on his Macbook. It’s a bit weird, since there no background sound of the Faire during this part, but it was the only way I could get a reasonable recording of the audio. I love the effect, and think it would be really fun packaging this as a standalone using the Teensy Audio library and audio adapter hardware.

Continue reading “Ball Run Gets Custom Sound Effects”

ASCII Art With Pure Data And A Typewriter

[vtol] is quickly becoming our favorite technological artist. Just a few weeks ago he graced us with a Game Boy Camera gun, complete with the classic Game Boy printer. Now, he’s somehow managed to create even lower resolution images with a modified typewriter that produces ASCII art images.

As with everything dealing with typewriters, machine selection is key. [vtol] is using a Brother SX-4000 typewriter for this build, a neat little daisy wheel machine that’s somehow still being made today. The typewriter is controlled by an Arduino Mega that captures an image from a camera, converts it to ASCII art with Pure Data and MAX/MSP, then slowly (and loudly) prints it on a piece of paper one character at a time.

The ASCII art typewriter was recently shown at the 101 Festival where a number of people stood in front of a camera and slowly watched a portrait assemble itself out of individual characters. Check out the video of the exhibit below.

Continue reading “ASCII Art With Pure Data And A Typewriter”

Meet Registroid – Mutant Cash Register Music Sequencer

73 years ago WWII was in full swing, the world’s first computer had not yet crunched atomic bomb physics and department store cash registers had to add up your purchases mechanically. Back then, each pull caused the device to whirl and kerchunk like a slot machine. [David] & [Scott] kidnapped one of those clunkers and forced it to sing a new tune. Thus the Registroid was born, a self-described “mutant vintage cash register that is a playable, interactive electro-house looping machine.” Why did no one else think of this yet?

Inside, the adding gears and tumbling counters were gutted to make room for the electronics, amp and speaker. Keys were converted to Arduino inputs that then feed to MAX/MSP which serves as a basic midi controller. On top, five “antennae” lamps with LEDs serve as a color organ where they pulse with the audio as split up by an MSGEQ7 equalizer chip. Each row of latching keys corresponds to a different instrument: drum beats, baselines, synths, and one-shots.

We have seen similar things done to a Game Boy and typewriter before, but a cash machine is new to us. Perhaps someday someone will flip the trend and type their twitter messages from an antique harpsichord.

The Registroid appears quite popular when on display at local events, including some wonder when a secret code opens the cash drawer.

Continue reading “Meet Registroid – Mutant Cash Register Music Sequencer”

Guitarduino show and tell

guitarduino-show-and-tell

[Igor Stolarsky] plays in a band called 3’s & Sevens. We’d say he is the Guitarist but since he’s playing this hacked axe we probably should call him the band’s Guitarduinist. Scroll down and listen to the quick demo clip of what he can do with the hardware add-ons, then check out his video explanation of the hardware.

There are several added inputs attached to the guitar itself. The most obvious is the set of colored buttons which are a shield riding on the Arduino board itself. This attaches to his computer via a USB cable where it is controlling his MaxMSP patches. They’re out of the way and act as something of a sample looper which he can then play along with. But look at the guitar body under his strumming hand and you’ll also see a few grey patches. These, along with one long strip on the back of the neck, are pressure sensors which he actuates while playing. The result is a level of seamless integration we don’t remember seeing before. Now he just needs to move the prototype to a wireless system and he’ll be set.

If you don’t have the skills to shred like [Igor] perhaps an automatic chording device will give you a leg up.

Continue reading “Guitarduino show and tell”

iPhone wielding guitar adds tip of your finger or tip the instrument control

[Rob Morris] has been hard at working improving his guitar augmentation techniques. Here he’s demonstrating the use of an iPhone to control the effects while he plays. This builds on the work he shared a few years ago where he strapped a Wii remote to the body of his ax.

Just like the Wii remote, the iPhone includes an accelerometer. As you would expect the best parts of the older hack made it into this one, but the inclusion of the touch screen adds a lot more. In the clip after the break he starts by showing off the screen controlling a whammy bar functionality. But we really love the octave offset feature that comes next. This kind of sound manipulation simply can’t be done using a purely physical method (like the whammy bar can). But he’s not done yet. The demo finishes with a Theremin feature. You’ll notice he plucks a string but no sound comes out until he starts touching the screen. This turns it into an entirely different type of instrument.

The only info we have about putting this together is the list of packages he’s using:  TouchOSC, Max/Msp, and GuitarRig

Continue reading “iPhone wielding guitar adds tip of your finger or tip the instrument control”

Inconspicuous guitar hack adds a lot of control to Max/MSP

[Sam] is working on his Interactive Technology Degree and he made some alterations to this guitar as a class project. It doesn’t look much different, but closer inspection will reveal a handful of extra buttons, and a camera module. He actually added a Wii remote to the guitar which is used to control Max/MSP.

His pinky is pointing at one of the buttons. That one is red and triggers the Bluetooth sync function for the Wii remote. The other four buttons are wired to the up, down, A, and B buttons. In the video after the break [Sam] talks about the Max/MSP front-end which is used to connect the remote to the computer. Once communications are established the accelerometer sensor data is continuously streamed to the software, and the other four buttons are used for controlling the patches.

The camera module that is mounted in the guitar can be used to stream video but it appears to have no effect on the sound. In fact, the live video feed can be mixed with a waveform generation. Sound characteristics like volume affect the cross-fade between the two video signals. [Sam] talks about this feature, but when the playing demo starts about 6:10 into the clip we don’t seen any of the live video on the projection screen.

Continue reading “Inconspicuous guitar hack adds a lot of control to Max/MSP”

Arduino and Open Sound Control without an Ethernet shield

Open Sound Control (OSC) is a communications protocol that can be seen as a modern alternative to MIDI. It’s specifically designed to play nicely with network communication systems. The problem with using it along with Arduino-based gadgets is that you then need to use something like an Ethernet shield to provide the network connection. [Liam Lacey] decided to use Processing as a go-between for OSC and the Arduino in lieu of the Ethernet Shield. One of the major benefits of this method is that it gives you some flexibility when it comes to how the Arduino communicates. Since a USB connected Arduino can be addressed by the Processing sketch in the same way as an AVR chip connected via an RS232 serial port, [Liam’s] method will allow you to prototype on an Arduino board, but transition to your own non-USB hardware for the finished project. The one big drawback to this method is the need to have a computer connected to your controller, but we’d bet you’d need one to run MAXmsp anyway.