Nanobots Swim like Scallops in Non-Newtonian Fluids

The idea of using nanobots to treat diseases has been around for years, though it has yet to be realized in any significant manner. Inspired by Purcell’s Scallop theorem, scientists from the Max Planck Institute for Intelligent Systems have created their own version . They designed a “micro-scallop” that could propel itself through non-Newtonian fluids, which is what most biological fluids happen to be.

The scientists decided on constructing a relatively simple robot, one with two rigid “shells” and a flexible connecting hinge. They 3D-printed a negative mold of the structure and filled it with a polydimethylsiloxane (PDMS) solution mixed with fluorescent powder to enable detection. Once cured, the nanobot measured 800 microns wide by 300 microns thick. It’s worth noting that it did not have a motor. Once the mold was complete, two neodymium magnets were glued onto the outside of each shell. When a gradient-free external magnetic field was applied, the magnets make the nanobot’s shells open and close. These reciprocal movements resulted in its net propulsion through non-Newtonian media. The scientists also tested it in glycerol, an example of a Newtonian fluid. Confirming Purcell’s Scallop theorem, the nanobot did not move through the glycerol. They took videos of the nanobot in motion using a stereoscope, a digital camera with a colored-glass filter, and an ultraviolet LED to make the fluorescent nanobot detectable.

The scientists did not indicate any further studies regarding this design. Instead, they hope it will aid future researchers in designing nanobots that can swim through blood vessels and body fluids.  We don’t know how many years it will be before this becomes mainstream medical science, but we know this much: we will never look at scallops the same way again!

Continue reading “Nanobots Swim like Scallops in Non-Newtonian Fluids”

An Open Hardware Platform for ECG, EEG and Other Measurements

[Eric] tipped us about the OpenHarwareExG project which goal is to build a device that allows the creation of electrophysiological signal processing applications. By the latter they mean electrocardiography (ECG, activity of the heart), electroencephalography (EEG, signals on the scalp), electromyography (EMG, skeletal muscles activity), electronystagmography and electrooculography (ENG & EOG, eye movements) monitoring projects. As you can guess these signals are particularly hard to measure due to their small amplitude and therefore susceptibility to electrical noise.

The ADS1299 8-channel 24-bit analog front end used in this platform is actually electrically isolated from the rest of the circuit so the USB connection wouldn’t perturb measurements. An Arduino-compatible ATSAM3X microcontroller is used and all the board is “DIY compatible” as all parts can be sourced in small quantities and soldered by hand. Even the case is open source, being laser cut from acrylic.

Head to the project’s website to download all the source files and see a quick video of the system in action.

Interested in measuring the body’s potential? Check out an ECG that’s nice enough to let you know you have died, or this Android based wireless setup.


Hacking A Reader For Medical Test Strips


[Rahul] works at a startup that produces cutting edge diagnostic test cards. These simple cards can test for enzymes, antibodies, and diseases quickly and easily. For one test, this greatly speeds up the process of testing and diagnosis, but since these tests can now be administered en masse, health services the world over now have the problem of reading, categorizing, and logging thousands of these diagnostic test cards.

The normal solution to this problem is a dedicated card scanner, but these cost tens of thousands of dollars. At a 24-hour hackathon, [Rahul] decided to bring down the cost of the card scanners by whipping up his own, built from a CD drive and an Arduino.

The card [Rahul] used, an A1c card that tests for glucose bound to hemoglobin, has a few lines on the card that fluoresce with different intensify depending on the test results. This can be easily read with a photodiode connected to an Arduino. The mechanical part of the build consisted of an old CD drive with a 3D printed test strip adapter. Operation is very simple – just put the test strip in the test strip holder, press a button, and the results of the test are transmitted over Bluetooth.

Not only is [Rahul]’s build extremely simple, it’s also extremely useful and was enough to net him the ‘Most Innovative Project’ prize at the hackathon in his native Singapore.

Pulse oximeter displays blood oxygen levels on a PC

The last time you were in the emergency room after a horrible accident involving a PVC pressure vessel, a nurse probably clipped a device called a pulse oximeter onto one of your remaining fingers. These small electronic devices detect both your pulse and blood oxygen level with a pair of LEDs and a photosensor. [Anders] sent in a great tutorial for building your own pulse oximeter using a fancy ARM dev board, but the theory behind the operation of this device can be transferred to just about any microcontroller platform.

The theory behind a pulse oximeter relies on the fact that hemoglobin absorbs red and infrared light differently based on its oxygenation levels. By shining a red and IR LED through a finger onto a photoresistor, it’s possible to determine a person’s blood oxygen level with just a tiny bit of math.

Of course a little bit of hardware needs to be thrown into the project; for this, [Anders] used an EMF32 Gecko starter kit, a great looking ARM dev board. After connecting the LEDs to a few transistors and opamps, [Anders] connected his sensor circuit to the ADC on the Gecko board. From here it was very easy to calculate his blood oxygen level and even display his pulse rate to a PC application.

Yes, for just the price of a dev board and a few LEDs, it’s possible to build your own medical device at a price far below what a commercial pulseox meter would cost. FDA approval not included.

Robo Doc reads children’s pulses without scaring them

[Markus] recently took his 14-month-old daughter to the pediatrician for a routine checkup. During the examination, the doctor needed to measure her pulse and quickly clamped an infrared heart rate monitor onto her finger. Between the strange device clamped to her finger and incessant beeping of machines, [Markus]’ daughter got scared and started to cry. [Markus] thought these medical devices were far too scary for an infant, so he designed a funny robot to read an infant’s heart rate.

[Markus] liked the idea the Tengu, a robot with a LED matrix for facial expressions, and used it as inspiration for the interface and personality of his RoboDoc. To read a child’s pulse rate, [Markus] used a photoplethysmography sensor; basically an IR LED and receiver that reflects light off a finger bone and records the number of heartbeats per minute.

The build is tied together with a speaker allowing the RoboDoc to give the patient instructions, and a servo to turn the head towards the real, human doctor and display the recorded heart rate.

We think the RoboDoc would be far less disconcerting for an infant that a huge assortment of beeping medical devices, and we can’t wait to see [Markus]’ next version of non-scary doctor’s tools.

ReactionWare 3D printed medicine

The University of Glasgow has released a Chemistry research paper covering the applicational process of printing pharmaceutical compounds.

Yes thats correct actually printing medication. Using various feedstock of chemicals they see a future where manufacturing your medication from home will be possible. Using standard 3D printing technology it is possible to assemble pre-filled “vessels” in such a way that the required chemical reactions take place to produce the required medication. This will be like having a minature medication manufacturing facility in your home. The possible implications of this could be far reaching.

There would need to be a locked down software etc or certain chemcials restrictions to prevent the misuse of this technology. Prof [Lee Cronin], who came up with the paper’s principal has called this process “reactionware”

Professor [Cronin] found, using this fabrication process, that even the most complicated of vessels could be built relatively quickly in just a few hours.

[via boingboing] Continue reading “ReactionWare 3D printed medicine”

Printing organs with a 3D printer

[Jordan Miller], [Christopher Chen], and a whole bunch of other researchers at the department of bioengineering at U Penn have figured out a way to print 3D tissues using a 3D printer. In this case, a RepRap modified to print sugar.

Traditional means of constructing living 3D tissues face a problem – in a living body, there’s a whole bunch of vasculature sending Oxygen and nutrients to the interior cells. In vitro, these nutrients can’t get to the cells in the core of a mass of tissue. [Jordan], [Chris], et al. solved this problem by printing a three-dimensional sugar lattice. After encasing this lattice in a gel embedded with living cells, the sugar can be dissolved and the nutrients pumped through the now hollow capillaries in the gel.

If you have access to Nature, the full text article is available here. There’s also a great video showing off this technique after the break.

Continue reading “Printing organs with a 3D printer”