SensorTape Unrolls New Sensor Deployment Possibilities

An embedded MEMS sensor might be lots of fun to play with on your first foray into the embedded world–why not deploy a whole network of them? Alas, the problem with communicating with a series of identical sensors becomes increasingly complicated as we start needing to handle the details of signal integrity and the communication protocols to handle all that data. Fortunately, [Artem], [Hsin-Liu], and [Joseph] at MIT Media Labs have made sensor deployment as easy as unraveling a strip of tape from your toolkit. They’ve developed SensorTape, an unrollable, deployable network of interconnected IMU and proximity sensors packaged in a familiar form factor of a roll of masking tape.

Possibly the most interesting technical challenge in a string of connected sensor nodes is picking a protocol that will deliver appreciable data rates with low latency. For that task the folks at MIT Media labs picked a combination of I²C and peer-to-peer serial. I²C accomodates the majority of transmissions from master to tape-node slave, but addresses are assigned dynamically over serial via inter-microcontroller communication. The net effect is a fast transfer rate of 100 KHz via I²C with a protocol initialization sequence that accommodates chains of various lengths–up to 128 units long! The full details behind the protocol are in their paper [PDF].

With a system as reconfigurable as SensorTape, new possibilities unfold with a solid framework for deploying sensors and aggregating the data. Have a look at their video after the break to get a sense of some of the use-cases that they’ve uncovered. Beyond their discoveries, there are certainly plenty others. What happens when we spin them up in the dryer, lay them under our car or on the ceiling? These were questions we may never have dreamed up because the tools just didn’t exist! Our props are out to SensorTape for giving us a tool to explore a world of sensor arrays without having to trip over ourselves in the implementation details.

via [CreativeApplications]

Continue reading “SensorTape Unrolls New Sensor Deployment Possibilities”

Augmented Reality Becomes Useful, Real

The state of augmented reality is terrible. Despite everyone having handheld, portable computers with high-resolution cameras, no one has yet built ‘Minecraft with digital blocks in real life’, and the most exciting upcoming use for augmented reality is 3D Dungeons and Dragons. There are plenty of interesting things that can be done with augmented reality, the problem is someone needs to figure out what those things are. Lucky for us, the MIT Media Lab knocked it out of the park with the ability to program anything through augmented reality.

The Reality Editor is a simple idea, but one that is extraordinarily interesting. Objects all around you are marked with a design that can be easily read by a smartphone running a computer vision application. In augmented reality, these objects have buttons and dials that can be used to turn on a lamp, open a car’s window, or any other function that can be controlled over the Internet. It’s augmented reality buttons for everything.

This basic idea is simple, but by combining it by another oft-forgotten technology from the 90s, we get something really, really cool. The buttons on each of the objects can be connected together with a sort of graphical programming language. Scan a button, connect the button to a lamp, and you’re able to program the lamp with augmented reality.

The Reality Editor is already available on the Apple app store, and there are a number of examples available for people to start tinkering with this weird yet interesting means of interacting with the world. If you’ve ever wondered how we’re going to interact with the Internet of Things, there you have it. Video below.

Continue reading “Augmented Reality Becomes Useful, Real”

Deployable by Design With Bunnie Huang, Nadya Peek, and Joi Ito

We follow [bunnie]’s blog as he posts interesting and usable information quite regularly. [bunnie] posted about a video of a recent talk he did at MIT Media Lab with Nadya Peek and Joi Ito. This was in lieu of his monthly “name that ware” competition, which is worth looking into as well.

The talk is focused on small volume manufacturing and the experiences that the speakers have under their collective belt is large enough that the conversation takes a turn from how to do things in practice, to the theory and technique of manufacturing on a philosophical level.

[bunnie] prefaces the conversation with an explanation of some of the design and manufacturing processes involved when working on the circuit stickers project. He talks about the importance of testing the product and the complex test jig that is required to quality check a simple (in comparison to the test jig) product. [bunnie] shares an overview of the project timeline and where some extended design stages might be found in unexpected places.

The design and manufacturing process is discussed on many levels throughout the talk. Among the points that are insightful, we certainly found ourselves a little jelly of all the time [bunnie] gets to spend in Shenzhen.

If you’re not familiar with [bunnie]’s blog you can check it out at Pro Tip: you can spend the better part of your workday browsing topics in the sidebar on the right.

We have covered the MIT Media Lab before, including a trip to Shenzhen that is discussed in the Media Lab talk by [Joi] and [bunnie]. Another interesting interview at SXSW earlier this year by [Sophi Kravitz] who spoke with [Sunanda Sharma] about mediated matter.

Open Hybrid Gives you the Knobs and Buttons to your Digital Kingdom

With a sweeping wave of complexity that comes with using your new appliance tech, it’s easy to start grumbling over having to pull your phone out every time you want to turn the kitchen lights on. [Valentin] realized that our new interfaces aren’t making our lives much simpler, and both he and the folks at MIT Media Labs have developed a solution.

open-hybrid-light-color-pickerOpen Hybrid takes the interface out of the phone app and superimposes it directly onto the items we want to operate in real life. The Open Hybrid Interface is viewed through the lense of a tablet or smart mobile device. With a real time video stream, an interactive set of knobs and buttons superimpose themselves on the objects they control. In one example, holding a tablet up to a light brings up a color palette for color control. In another, sliders superimposed on a Mindstorms tank-drive toy become the control panel for driving the vehicle around the floor. Object behaviors can even be tied together so that applying an action to one object, such as turning off one light, will apply to other objects, in this case, putting all other lights out.

Beneath the surface, Open Hybrid is developed on OpenFrameworks with a hardware interface handled by the Arduino Yún running custom firmware. Creating a new application, though, has been simplified to be achievable with web-friendly languages (HTML, Javascript, and CSS). The net result is that their toolchain cuts out a heavy need for extensive graphics knowledge to develop a new control panel.

If you can spare a few minutes, check out [Valentin’s] SolidCon talk on the drive to design new digital interfaces that echo those we’ve already been using for hundreds of years.

Last but not least, Open Hybrid may have been born in the Labs, but its evolution is up to the community as the entire project is both platform independent and open source.

Sure, it’s not mustaches, but it’s definitely more user-friendly.

Continue reading “Open Hybrid Gives you the Knobs and Buttons to your Digital Kingdom”

Meetup in Boston this Thursday

Hackaday is headed to Boston this week. Meet up with us on Thursday at 6pm to show off your projects and meet other hackers in the area. Admission is free, just tell us you’re coming.

We’re hosting a Hackaday meetup at Artisan’s Asylum hackerspace. That name should sound familiar. This is the group that decided to throw down the robot gauntlet with Japan. We can’t wait to see what that’s all about first hand!

While in town we’ll also be stopping by the MIT Media Lab, a legendary den of cutting edge research that springs forth wave after wave of awesome inspiration. If you know of any projects going on there that we just shouldn’t miss please let us know below. We’re also looking for suggestions of other places we should check out while in town.

See you Thursday!

State-Aware Foldable Electronics Enters The Third Dimension

Still working with PCBs in 2D? Not [Yoav]. With some clever twists on the way we fab PCBs, he’s managed to create a state-aware foldable circuit board that responds to different configurations.

From his paper [PDF warning], [Yoav] discusses two techniques for developing foldable circuits that may be used repeatedly. The first method involves printing the circuit onto a flexible circuit board material and then bound front-and-back between two sheets of acrylic. Valid folded edges are distinguished by the edges of individual acrylic pieces. The second method involves laying out circuits manually via conductive copper tape and then exposing pads to determine an open or closed state.

Reconfigurable foldable objects may open the door for many creative avenues; in the video (after the break), [Yoav] demonstrates the project’s state-awareness with a simple onscreen rendering that echoes its physical counterpart.

While these circuits are fabbed from a custom solution, not FR1 or FR4, don’t let that note hold your imagination back. In fact, If you’re interested with using PCB FR4 as a structural element, check out [Voja’s] comprehensive guide on the subject.

Continue reading “State-Aware Foldable Electronics Enters The Third Dimension”

What You See Is What You (Laser) Cut

WYSIWYG editors revolutionized content management systems, will WYSIWYC interfaces do the same for laser cutters? Unlikely, but we still appreciate the concepts shown here. Chalkaat uses computer vision to trace lines drawn in ink with the cutting power of a laser.

At its core, you simply draw on your work piece with a colored marker and the camera system will ensure the laser traces this line exactly. There is even a proof of concept here for different behavior based on different line color, and the technique is not limited to white paper but can also identify and cut printed materials.

This is a spin on [Anirudh’s] first version which used computer vision with a projector to create a virtual interface for a laser cutter. This time around we can think of a few different uses for this. The obvious is the ability for anyone to use a laser cutter by drawing their designs by hand. Imagine introducing grade-school children to this type of technology by having them draw paper puppets and scenery in advance and have it cut in shop class for use in art projects.

A red arrow indicates cut line, but a pink arrow is used for indicating positioning on a work piece. The example shows a design from a cellphone etched next to a positioning marker. But we could see this used to position expensive things (like a Macbook) for etching. We also think the red marker could be used to make slight adjustments to cut pieces by scribing a work piece with the marker and having the laser cut it away.

This concept is a product of [Nitesh Kadyan] and [Anirudh Sharma] at the Fluid Interfaces group at the MIT Media Lab and is something we could see being built into future laser cutter models. What do you think?

Continue reading “What You See Is What You (Laser) Cut”