Super Thin ICs are Coming

An ordinary integrated circuit is made of layers of material. Typically a layer is made from some material (like silicon dioxide, polysilicon, copper, or aluminum). Sometimes a process will modify parts of a layer (for example, using ion implantation to dope regions of silicon). Other times, some part of the layer will be cut away using a photolithography process.

Researchers at MIT have a new technique that allows super thin layers (1-3 atoms thick) and–even more importantly–enables you to use two materials in the same layer. They report that they have built all the basic components required to create a computer using the technique.

Continue reading “Super Thin ICs are Coming”

Augmented Reality Becomes Useful, Real

The state of augmented reality is terrible. Despite everyone having handheld, portable computers with high-resolution cameras, no one has yet built ‘Minecraft with digital blocks in real life’, and the most exciting upcoming use for augmented reality is 3D Dungeons and Dragons. There are plenty of interesting things that can be done with augmented reality, the problem is someone needs to figure out what those things are. Lucky for us, the MIT Media Lab knocked it out of the park with the ability to program anything through augmented reality.

The Reality Editor is a simple idea, but one that is extraordinarily interesting. Objects all around you are marked with a design that can be easily read by a smartphone running a computer vision application. In augmented reality, these objects have buttons and dials that can be used to turn on a lamp, open a car’s window, or any other function that can be controlled over the Internet. It’s augmented reality buttons for everything.

This basic idea is simple, but by combining it by another oft-forgotten technology from the 90s, we get something really, really cool. The buttons on each of the objects can be connected together with a sort of graphical programming language. Scan a button, connect the button to a lamp, and you’re able to program the lamp with augmented reality.

The Reality Editor is already available on the Apple app store, and there are a number of examples available for people to start tinkering with this weird yet interesting means of interacting with the world. If you’ve ever wondered how we’re going to interact with the Internet of Things, there you have it. Video below.

Continue reading “Augmented Reality Becomes Useful, Real”

Using RF To See Through Walls

This is some seriously cool stuff. Researchers at MIT recently came up with a device that can “see” through walls. It can actually identify a person (or people) behind a solid object.

They call it RF-Capture and it uses radio waves to identify people. Kind of like some high tech radio-frequency sonar. Using a very complex algorithm it can reconstruct the human figure by analyzing the various reflections of the signals transmitted. It’s so accurate it can even distinguish between different people based on size and posture, and even trace a person’s handwriting in the air.

Sounds like whatever they’re doing, it’s probably blasting a lot of radiation to do it. You’d think so, but no.

Continue reading “Using RF To See Through Walls”

Amino Wants to Bring Bioengineering to Your Workbench

As the maker movement has exploded in popularity in recent years, there has been a strong push to put industrial tools into the hands of amateur tinkerers and hackers. CNC mills, 3D Printers, and laser cutters were all extremely expensive machines that were far too costly for most people until makers demanded them and hackers found ways to make them affordable. But, aside from the home brewing scene, those advancements haven’t really touched on anything organic. Which is a deficiency that Amino, a desktop bioengineering system, is seeking to address.

Amino, created by [Julie Legault], is currently seeking crowd-funding via Indiegogo. Hackaday readers are more suspicious than most when it comes to crowd-funding campaigns, and with good reason. But, [Julie Legault] has some very impressive credentials that lend her a great deal of credibility. She has four degrees in the arts and sciences, including a Masters of Science at the MIT Media Lab.

It was for that degree at MIT that [Julie] started Amino as her thesis. Her plan is to bring the tools necessary for bioengineering to the masses – tools which are traditionally only available in research labs. Those tools are packaged into a small desktop-sized unit called Amino. Backers will receive this desktop system, along with the supplies for their first project. Those projects are predefined, but the tools are versatile enough to allow users to move on to their own projects in the future. [Julie] thinks that the future is in bioengineering, and that the best way to feed innovation is to make the necessary tools both affordable and accessible.

Continue reading “Amino Wants to Bring Bioengineering to Your Workbench”

Shape-Shifting Composite That You Can Make At Home

In material science, thermal expansion is a very well understood concept. However, in most cases it’s regarded as somewhat of a nuisance. It’s the kind of thing that gives engineers headaches, and entire subsystems of machines are often designed specifically to combat it. But a group of students at MIT have come up with an ingeniously simple way of taking advantage of thermal expansion to create shape-changing composites.

Their project is a method of creating shape-shifting composites, called uniMorph. It works by using resistive heating (or simply ambient temperature) to change the temperature of a sandwich composite. The composite is made of two different materials, and the copper traces to heat them. The two materials themselves aren’t particularly important, what’s important is that they have vastly different thermal expansion rates.

When the composite is heated, one material will expand more or less than the other material. Depending on the relative shapes of the two materials, this causes the composite to bend or twist in predetermined ways. How much it bends, for example, is just a matter of how the layers are cut, and how much they’re heated.

The concept itself isn’t exactly new – bimetallic composites have existed for ages. We even covered a similar idea that works based on moisture content. But, the methods used for uniMorph are very well thought out. It’s very inexpensive to produce, and the students seem to have devised reliable techniques for designing the layers in order to produce a desired shape change.

Continue reading “Shape-Shifting Composite That You Can Make At Home”

MIT’s Glass 3D Printer

How hot does your 3D printer’s hot end get? Most low cost printers heat up to 240°C (464°F) at the most because they contain PEEK which starts to get soft if you go much higher. Even a metal hot end with active cooling usually won’t go much higher than 400°C (752°F). Pretty hot, right? [MIT’s] new G3DP printer goes to 1900°F (over 1000°C) and prints optically clear glass.

By changing design and print parameters, G3DP can limit or control light transmission, reflection and refraction. The printer uses a dual heated chamber. The upper chamber acts as a 1900°F kiln while the lower chamber serves to anneal the structures. The print head is an alumina-zircon-silica nozzle.

Continue reading “MIT’s Glass 3D Printer”

Dropping by the MIT Electronics Research Society

We’re in Boston this week and my first stop was at MITERS last night. This is the MIT Electronics Research Society, which started as a way to provide free access to computers for all students. Since those humble beginnings the organization has grown to include a slew of fabrication and test hardware, as well as a vibrant community that makes the group a great place to hang out.

Walking into the building you’re greeted with double doors strewn with interesting electronics and many examples of fabrication in the form of the word MITERS. The group, which is pushing 60-years of existence, feels immediately like a hackerspace where creativity and anarchy duke it out in a wild dance of experimentation. On this particular Wednesday evening we encountered a room of about 10 people working feverishly to fabricate electric racers for the PRS racing circuit in Detroit this Saturday.

Like a hackerspace, MITERS is completely member (read: student) run. There is a board that helps keep things on the rails. There is no membership fee; funding for the organization is sourced from Swapfest, a weekly flea market during the summer.

There is a strong slant toward machine shop at this hackerspace. In addition to a respectable Bridgeport CNC Mill, the machine tools and hand tools provide for almost all your fabrication needs.

What can be built in this space? How about a unibalancer? This is a single-wheeled, human-ridable vehicle that has a 7-mile cruise radius between charges. For me the most interesting feature is the deadman’s switch. You know those black rubber strips on public buses that you press for the next stop? This unibalancer has one that you need to stand on to make it go.

The hackers at MITERS excel when it comes to electric vehicles and this time of year that means the Power (Wheels) Racing Series. There are restrictions on size, and power output so the teams squeeze every bit that they can. For me, the most interesting build is based off of a pair of Ryobi electric chainsaws. The 40V batteries for these are themselves quite formidable but not used at all in the build. The team has reverse-engineered the driver circuits and written their own firmware for the STM8 microcontrollers on the boards. The chainsaws use chains to drive the two rear wheels. The entire system is monitored with XBEE-based wireless data which is displayed on a tablet.

This isn’t the only PRS build. The MITERS plan to take three different vehicles with them this weekend. The one they can’t bring is the huge electric shopping cart (with mandatory wheelie bar) which hangs from the ceiling of the space.

In addition to the formidable fabrication projects, there are a multitude of electronic projects to be seen. There is a musical tesla coil which is the best I’ve ever heard. It could easily be mistaken as a proper speaker. If you need more bass there’s a massive ceiling-mounted sub-woofer for that. And if you want a more formidable tesla coil, the parts are there.

Look hard enough and you’ll even find battle robots. This one had diamond plate that spins with a variety of nasty accoutrements intended for maximum damage of its foe. On the underside you’ll see a brushless motor used the opposite of how you might think. The shaft is attached to the locomotion frame of the bot. The underside of the spinning diamond plate has a ring of antistatic mat against which this brushless motor body spins.

Thanks to the MITERS for welcoming us in. It was a blast seeing all of the projects they’re working on!

Meetup at Artisan’s Asylum Tonight

If you’re in the Boston area, head on over to Artisan’s Asylum tonight starting at 6. They were gracious enough to open their doors for a Hackaday Meetup. Bring some hardware to show off if you can, if you can’t that’s fine as well. We’ll have a few lightning talks, some social time, and maybe an afterbar!

To wrap things up, we have covered a few projects from MITERS already, like this Power Wheels Racing build, and an electric go kart done the right way. Now that we’ve met them in person we’ll be on the lookout for a lot more awesome hacks from them.

[Thanks John for suggesting we stop by!]