Heavy Lift Electromagnet from Microwave Oven Transformers

It’s OK, you can admit it — from the time you first saw those huge electromagnetic cranes in scrap yards you’ve wanted to have one. While it may not fling around a car, parts donated from scrapped microwaves can let you build your own electromagnetic lifting device and make that dream finally come true.

We recently watched [MakeItExtreme] turn a couple of microwave oven transformers into a somewhat ill-advised wall-climbing rig. It looks like that may have been the inspiration for this build, and the finished product appears to be a tad more useful this time. The frames of three MOTs are cut open to remove the secondary coils and leave the cores exposed as poles for the future magnets. A shallow dish is fabricated out of steel and the magnets are welded in place.

With the primaries wired together, the magnets are epoxy potted, the business end is faced off cleanly, and the whole thing put to the test. [MakeItExtreme] doesn’t go into control details in the video below, but the website mentions the magnet being powered off a 24V 15A power supply with battery backup in case of mains failure.

They’ve lifted 200kg so far, and it looks like a pretty cool addition to a shop already packed with other builds, like their MOT spot welder and a propane tank sandblaster.

Continue reading “Heavy Lift Electromagnet from Microwave Oven Transformers”

Making Lichtenberg Figures in Wood

Ever heard of a Lichtenberg Figure? It’s the branching electrical discharge you can sometimes see on an insulating material… That’s right — when the voltage is high enough — it’ll find a way. Using one of our favorite low-cost high voltage transformers from a microwave, [TheBackYardScientist] shows us how to make our own Lichtenberg Figures!

It’s actually pretty easy. All you need is an old microwave, some plywood, and water with baking soda mixed in. First, you’ll need to take the transformer out of the microwave — a simple hack we’ve covered many times before — you’ll need to wire it in a way that allows you to get a few thousand volts out of it.

Then by mixing baking soda in water, you can increase the conductivity — let the wood soak it up overnight, and now you’re ready to go! By attaching the leads to either side of the wood, it’s now conductive enough to allow the electricity to branch across the wood, burning awesome patterns as it goes — just take a look at the following video!

Continue reading “Making Lichtenberg Figures in Wood”

“Professor Kill A. Volt” Shocks Pumpkins with his Tesla Coil


[JJ Dasher] is back again this year, shocking some pumpkins! (Volume warning). We featured [JJ] two years ago for his Halloween candy shocking Tesla coil. He apparently has been busy in his mad scientist laboratory doing some upgrades. This year his coil is producing 5 foot long streaming arcs!

[JJ’s] Tesla coil is a uses two microwave oven transformers as a power supply. He also uses an Asynchronous Rotary Spark Gap (ASRG). As the name implies, a rotary spark gap uses a motor to turn a rotor. At certain points in the rotation, the rotor creates a small enough gap that a high voltage spark can jump across, energizing the primary coil. This idea is similar to an automotive ignition system distributor. [Pete] gives a great example of an ASRG in this video. Most ASRG based Tesla coils use the small motor to spin up the spark gap. Varying the speed of the motor creates the characteristic “motor revving” noise heard in the final arcs of the Tesla Coil.

[JJ] made things a bit more interesting by installing a couple of fluorescent bulbs inside a pumpkin near the coil. The coil lights them easily, and they glow even brighter when the pumpkin is struck. Still not satisfied, he also donned his grounded chainmail gloves and drew the arc to himself. We always love seeing people safely taking hits from massive Tesla coils, but this definitely falls under the “don’t try this at home” banner.

Continue reading ““Professor Kill A. Volt” Shocks Pumpkins with his Tesla Coil”

One man’s microwave oven is another man’s hobby electronics store

There are loads of Internet content depicting the usefulness of salvaged innards found in defunct microwave ovens. [Mads Nielsen] is an emerging new vblogger with promising filming skills and intriguing beginner electronics content. He doesn’t bring anything new from the microwave oven to the dinner table, yet this video should be considered a primer for anybody looking to salvage components for their hobby bench. To save some time you can link in at the 5 minute mark when the feast of parts is laid out on the table. The multitude of good usable parts in these microwave ovens rolling out on curbsides, in dumpsters, and cheap at yard sales all over the country is staggering and mostly free for the picking.

The harvest here was: micro switches, X and Y rated mains capacitors, 8 amp fuse, timer control with bell and switches, slow turn geared synchronous 4 watt motor 5 rpm, high voltage capacitor marked 2100 W VAC 0.95 uF, special diodes which aren’t so useful in hobby electronics, light bulb, common mode choke, 20 watt 68 Ohm ceramic wire-wound resistor, AC fan motor with fan and thermostat cutout switches NT101 (normally closed).

All this can be salvaged and more if you find newer discarded units. Our summary continues after the break where you can also watch the video where [Mads] flashes each treasure. His trinkets are rated at 220 V but if you live in a 110 V country such components will be rated for 110 V.

Continue reading “One man’s microwave oven is another man’s hobby electronics store”

Current limiter for a MOT welder


[Mike Worth] wanted the option to run his Microwave Oven Transformer welding rig at less that full power. After being inspired by some of the other MOT hacks we’ve featured he figured there must be a lot of ways to do this. But his searches on the topic didn’t turn up anything. So he just designed and built his own adjustable current limiter for the welder.

At the beginning of his write-up he details what we would call a bootstrap procedure for the welder. Go back and check out his original build post to see that he had been holding the framework for the cores together using clamps. To make the setup more robust he needed to weld them, but this is the only welder he has access to. So he taped some wood shielding over the coils and fired it up.

The current limiter itself is built from a third MOT. Adjustment is made to the cores by changing out the E and I shaped pieces. This allows for current limiting without altering the windings. [Mike] holds it all in place with a couple of bicycle wheel quick connect skewers.

It just goes to show that you should never get rid of a microwave without pulling the transformer. Even if you don’t need a welder wouldn’t you love a high-voltage bug zapper?

How-to: Build your own spot welder

Spot welders are used in the fabrication of automobiles, PC cases, power supplies, microwave ovens, electrical junction boxes, Faraday cages, and various electronics. A spot welder is used because it produces a highly defined point of contact weld. The materials are welded without excessive heating, so working pieces are handled easily. The weld is also highly controlled and repeatable. In this how-to we cover the basics of a spot welder, and then show you how to build one from a microwave oven transformer.

Continue reading “How-to: Build your own spot welder”

Induction furnace

induction furnace

[Tim Williams] made his own induction furnace. A copper tubing coil forms the primary winding, as the material to be heated becomes the short circuited secondary. The load material is subject to high power magnetic fields operating at radio frequency. The rapidly changing field induces current flow within the material, creating a great deal of heat. The brute power required a cooling system to match. In the video below, the induction furnace can be seen melting common table salt.

Continue reading “Induction furnace”