Add motorized blinds to your home theater

motorized-blinds

[Chipsy] found himself with an interesting problem. The room that serves his home theater has a wall mirror which reflects part of the screen during viewing. In an otherwise dark room this was very distracting. His solution was to add a blind that covers the mirror during viewing, but who wants to constantly pull that down and back up again? Since the motorized projection screen he is using has a remote control he figured out a way to motorize the blind and synchronize it with the screen’s remote.

The screen uses mechanical relays to switch the motor. He patched into these with an Arduino to detect whether the screen was going up or down. It was easy enough to use his own relay and motor with the blind, but he needed a way to stop the blind once it was in position. For covering up the mirror he simply sets an 18 second timer, but for retracting the blind he wanted precise alignment so he added a magnet and sense its position with a reed switch. See the synchronized screen and blind in the clip after the break.

Continue reading “Add motorized blinds to your home theater”

Repair your ice maker motor without buying a whole new assembly

ice-maker-repair

There are a number of things that can go wrong with an automatic ice maker. But one of the more common problems is that the motor which scoops the ice out of the integrated trays can burn out after years of use. [Dave] recently repaired a common ice maker motor and shows us how cheap and easy it can be. See how he did it in the video after the break.

Pictured above is the motor and gear box from the ice maker. Before disassembly he verified that the problem is with the motor by placing a piece of paper in the path of the fingers that move the newly formed ice. After removing the sensor arm and three screws he was able to pull this front portion from the unit. The two wires are clipped as near to the motor as possible and the motor itself comes out with just a twist. After verifying that the gears are not broken he sourced a $2.50 motor replacement by Googling the part number (M004 3W in this case). Once the new unit arrived the motor wires are connect in much the same way that a punch down Ethernet jack makes a connecting with insulated wires.

This is something worth looking into if your ice maker is not working. The manufacturer may suggest replacing the entire unit which can be well north of a hundred bucks… this is a worthwhile gambit to save some cash. Well, we guess you could always build your own non-electrical ice maker.

Continue reading “Repair your ice maker motor without buying a whole new assembly”

Scratch-built motor uses a clever design

[Lou] is on a hot streak when it comes to interesting builds. This time around he made his own motor using wood, PVC, some fasteners, and a bunch of enameled wire.

His method of building a commutator is intriguing. He first builds a rotor by cutting two opposing sides off of a PVC four-way connector and pushing a short galvanized pipe through what’s left. After adding two PVC nubs with caps and nails as pivot points he wraps the PVC and metal pipe with a continuous length of enameled wire. The enamel is then sanded off the windings around the PVC, and half is covered with electrical tape. The spinning rotor will cause the brushes to contact the bare wire during half of the rotation, and be insulated by the tape during the other half. The video after the break shows the motor in action, then walks you through each step of the build.

If you liked this video you should check out [Lou’s] water bottle rocket launcher, or his automated Ping Pong table topper which stores the game in the ceiling.

Continue reading “Scratch-built motor uses a clever design”

Building an electric-powered longboard for under $100

[Alan] doesn’t have to kick to get around town because he added a removable electric motor to his longboard. It looks great, and works just as well because he didn’t reinvent the wheel. The idea is a mashup of an electric Razor scooter and his long board.

The majority of the project revolved around mounting everything he needed to the board. When it comes to the drive wheel he designed a tension system. When a rider is not on the board the back wheels of the long board are off the ground by about an inch. The springs in the suspension system make it so when you do mount the board all wheels are touching, with the main drive wheel held tight to the pavement even while turning.

Unlike some electric skateboard builds [Alan] didn’t need to raise the board off the ground as the battery compartment is mounted on top of the deck. He added cooling fans for the hot summer days, and even used velcro to attach the charger so that he can juice it up when away from home. Check out his three minute show and tell embedded after the break.

Continue reading “Building an electric-powered longboard for under $100″

Robot servo control using smartphone audio jack

[Jim] has an old Android phone he’d like to use as a Robot brain. It’s got a lot of the things you’d want in a robot platform; WiFi, Bluetooth, a camera, an accelerometer, etc. But he needed some way to make the mobile, mobile. What he came up with is a chassis with servos that can be controlled by the phone’s audio port.

To start his adventure he crafted a square wave audio file in Audacity and then played it back on the Android music player. By monitoring the output on an oscilloscope he found the wave was well produced, with peaks of about 1V. With that in mind he designed a circuit using two transistors to amplify the signal, thereby creating a usable input for the servo motors. Each motor has one of these circuits connected to it, with the left and right channels from the audio jack driving them separately. In the clip after the break you can see he even wrote a simple Android app to extend the idea to a more usable level.

This is a similar technique as used by the recon robot we saw about a year ago.

Continue reading “Robot servo control using smartphone audio jack”

‘Vortex-drive’ for underwater ROV propulsion

This is [Lee von Kraus’] new experimental propulsion system for an underwater ROV. He developed the concept when considering how one might adapt the Bristlebot, which uses vibration to shimmy across a solid surface, for use under water.

As with its dry-land relative, this technique uses a tiny pager motor. The device is designed to vibrate when the motor spins, thanks to an off-center weight attached to the spindle. [Lee’s] first experiment was to shove the motor in a centrifuge tube and give it an underwater whirl. He could see waves emanating from the motor and travelling outward, but the thing didn’t go anywhere. What he needed were some toothbrush bristles. He started thinking about how those bristles actually work. They allow the device to move in one direction more easily than in another. The aquatic equivalent of this is an angled platform that has more drag in one direction. He grabbed a bendy straw, using the flexible portion to provide the needed surface.

Check out the demo video after the break. He hasn’t got it connected to a vessel, but there is definitely movement.

Continue reading “‘Vortex-drive’ for underwater ROV propulsion”

Chibikart: step-by-step lets you build your own tiny-wheel racer

[cHaRlEsg] posted a rant, then posted full instruction on how to build this electric go-kart for yourself.

Now the rant calls this an unobtainium-free sibling to the Chibikart. We’re sad to report that the unobtainium he’s talking about are the hyper-awesome hand-wound hub motors that powered the original kart which left us dumbstruck after seeing it for the first time. But look, few mortals have the skills and tools necessary to manufacture those circular marvels of modern engineering.

So you’ll just need to settle for stuff you can buy to assemble the tiny kart seen here. It’s all-electric, using two DC motors to power the rear wheels. You can catch it racing around the hallways in the video after the break. The only thing we can see missing from the equation (other than red shells and the like) is a helmet and bumpers (you’ll see why at the end of the clip).

Continue reading “Chibikart: step-by-step lets you build your own tiny-wheel racer”