Stylish OLED Watch Uses Accelerometer Instead of Buttons

A few days ago [Andrew] contacted us to offer his help for the design of the mooltipass project case. While introducing himself, he casually mentioned his OLED watch that you can see above.

The watch is based on the low-power MSP430F microcontroller from Texas Instruments. It can consume as little as 1.5uA while maintaining a real-time clock and monitoring interrupts. It also uses ferroelectric RAM, which doesn’t need any power to retain its memory contents. That means there’s no need to set the time again if you remove the CR2016 battery that powers the watch.

[Andrew] chose an 0.96″ OLED display that only consumes up to 7mA. He also included an accelerometer that allows him to interact with the watch through its single and double tap detecting feature. He modeled his PCB using EagleCAD and the whole assembly using Sketchup. Most of the components were soldered in his reflow (toaster) oven. The final result is a mere 8.8mm thick and looks very professional in our opinion.

Hackaday Links: November 10, 2013


[Henryk Gasperowicz], the wizard of electrons who makes LEDs glow for no apparent reason, has put up another one of his troll physics circuits. We have no idea how he does it (he does say he’s using wireless energy transmission) so a few solution videos would be cool, [Henryk].

Altoids tins make great electronic enclosures, but how about designing your PCBs to fit mint and gum containers? Here’s a Trident USBASP, a tiny Tic Tac ISP thingy, and a Mentos USB to JTAG interface.

By the end of this week, the PS4 will be out, along with the new PS4 camera. It’s a great camera – 1280×800 at 60Hz – but unless someone develops a driver for it, it shall forever remain tethered to a PS4. Luckily, there’s a project to develop a PS4 camera driver, so if you have some USB 3.0 experience, give it a shot.

Multimeter teardowns? [David]’s got multimeter teardowns. It’s an HP 3455A, a huge bench top unit from the 80s. This is, or was, pro equipment and strange esoteric components definitely make a showing. ±0.01% resistors? Yep. Part two has some pics of the guts and a whole ton of logic.

The US Air Force Academy just moved their embedded systems course over to the MSP430. Course director [Capt Todd Branchflower] just put all the course materials online, with the notes, datasheets, and labs available on Github.

Wireless Encryption Between Galileo and a MSP430

[Mark] recently finished his latest project, where he encrypts wireless communications between the new Intel Galileo and a Texas Instruments MSP430. The wireless interfaces used are the very common nRF24L01+ 2.4GHz transceivers, that had a direct line of sight 15 feet range during [Mark]’s tests. In his demonstration, the MSP430 sends an encrypted block of data representing the state of six of its pins configured as inputs. This message is then received by a sketch running on the Galileo and stored in shared memory. A python script then wakes up and is in charge of decrypting the message. The encryption is done using AES-128bits in Electronic Codebook mode (ECB) and semaphores are used to prevent simultaneous accesses to the received data. As it is the first project using an Intel Galileo we received, don’t hesitate to send us a tip if you found other ones.

Hackaday Links: September 15, 2013


First a quick announcement. We changed our “Kickstarter” category to “Crowd Funding“. We get a huge number of tips about crowd funding projects. We’re always interested in details. If you’re trying to get your crowd funding campaign on our front page make sure you’ve shared as many gritty project details (development process, problems/successes along the way, etc.) as possible . We usually prefer if this is done in a separate blog post from the campaign page itself.

Here’s a peephole hack that purportedly cost four grand. It uses a full on DSLR for the peephole hardware. Add a motion sensor and maybe you’ll be able to learn the faces of the neighbors who live on your floor. [via Gizmodo]

[Matthias] tells us that support for Rigol DS1052E oscilloscopes has been included in the 3.11 version of the Linux Kernel. Prior to this, getting the hardware to work on Linux was a hack, and a buggy one at that. For what it’s worth, here’s confirmation that support was added.

A post about reverse engineering the FitBit Aria Wi-Fi scale was sent in by [Christopher]. This makes us wonder if you could patch into a digital scale, using your own electronics to spoof the FitBit version?

We always keep our paperboard six-pack carriers so that we have a way to transport our homebrew beer. But rolling into a party with this laser-cut beer caddy which [Daniel] designed looks a lot cooler.

Texas Instruments has an MSP430 Selection Guide (PDF) which we found interesting. The first nine pages or so are pretty much just marketing, but several pages of parametric tables found after that make for a great collection of data on the hardware families. [via Dangerous Prototypes]

[Antoine] spared no expense building a coffee table that showcases his old motherboards. The illuminated glass and wood art piece rang in at around $400 in materials. We’re a little more minimalist with our home decor. We still want something along the lines of this LED matrix version.

Speaking of LED matrices, [Mario] dropped off a link to his LED Space Invaders game in the comments of last week’s Game of Light post. What we can’t figure out is why so many people hesitate to send in a tip about their awesome projects?

The Cramp: A MSP430-powered crane lamp


If you think your last project required a lot of soldering, take a look at [Multivac’s] remote controlled and fully-articulable desktop crane lamp. Sure, it’s a 430 microcontroller combined with an LED driver, 32 LEDs, PWM control, and some moving parts: but take a closer look at the structure. The Cramp uses an old HDD as its base, with the crane spinning around the main bearing that previously supported the platter. A system of spools and pulleys provides a reasonable range of motion to the rest of the build. Relocating the entire assembly, however, is evidently an unpleasant task.

[Multivac] based his design on a Liebherr LR1750 Crawler Crane, which he meticulously pieced together using leftover copper salvaged from an upgrade to his home’s mains wiring. A mountain of solder secures what must include several hundred joints—possibly more. The head of the lamp is an elegant exoskeleton-interpretation of industrial designer Eero Saarinen’s TWA Flight Center. You can see the Cramp in action in the video below.

Continue reading “The Cramp: A MSP430-powered crane lamp”

MSP430 alarm clock project


[Markus] turn his breadboard LED matrix tinkering into an alarm clock which wakes him each morning.

Don’t be fooled by how clean his assembly work is. That’s not a fabbed PCB, it’s a hunk of green protoboard which a lot of point-to-point soldering on the back side. It’s driven by the MSP430 G2452 which is oriented vertically in this image. The two horizonal ICs are 595 shift registers which drive the LED modules.

We already mentioned the cleanliness of his assembly, but there’s one other really cool design element. On the back of the unit is what looks like a battery holder for two AA cells. He’s using just one Lithium Iron Phosphate battery (3.2V) which is in the upper of the two cavities. This let him cut the lower part of the holder at an angle to act as a stand for the clock.

Don’t miss the video which walks us through the user interface. It has what you’d expect from an alarm clock. But there is a really bright white LED which mimics a sunrise clock and it does more than just buzz one note when the thing goes off.

Continue reading “MSP430 alarm clock project”

External pinball controls for an Android tablet


This hack, which adds external flipper controls to Android pinball, is a great way to cut your teeth at Android hardware hacking.

[Ruben] decided to go with the TI Launchpad for this project. The MSP430 dev board offers serial communications via a USB connection, but it’s not quite as easy as just finding the right cable. His tablet does support USB On the Go (OTG), but the board identifies itself as an ACM device which needs to be handled differently. In order to get the tablet talking to the Launchpad he compiled a CDC_ACM module for the Linux underpinnings that make up every Android OS. In this case the module is tailored for the Allwinner A10 chip inside his model of tablet, but it shouldn’t be too hard to adapt his guide for other processors.

Of course you could go a different route and use Bluetooth for connectivity. We’ve seen several gaming peripherals that use this technique with Android devices.

Continue reading “External pinball controls for an Android tablet”