Vintage Vertical Nixie Clock

verticalNixieClock

There’s no shortage of Nixie-related projects online, but this vertical wall clock is a solid build and looks pretty sleek. [andreas] actually sourced the wood from an old handrail, into which he drilled six holes for the tubes with 30mm bits, then treated it with some woodworm poison after noticing holes his drill wasn’t responsible for.

The schematic is what you’d expect for a Nixie clock, designed with 123D circuits. [andreas] provides both top and bottom layers in a high-res PDF if you’d prefer to etch your own boards at home rather than order a PCB from the man. He took the finished board and soldered all the components in place, using tape to prevent some short circuit possibilities and mounting the result onto a pair of black plastic rails. The entire assembly mounts to the wooden case and is rounded off with glued-on end caps and a back cover. As always, be aware of the danger presented by the high voltage requirements of Nixie Tubes, and don’t go licking the components.

Retro Modern Nixie Clock

timeface

[Reboots] is a humble hacker who enjoys nixie tubes. So when he saw an old General Electric battery charger for sale at a hamfest, he thought: “that case would make a nice clock…”

He was first exposed to nixie tube clocks a few years ago when his brother gave him a DIY nixie clock kit from [Peter Jensen's] website TubeClock.com — it was an easy build, and worked very well. It also introduced him to a unique driver for nixie tubes, an HV5622 high-voltage shift register made by Supertex inc. Compared to the traditional (and rare) 74141 nixie driver chips or discrete transistor drivers, the HV5622 is much smaller, requires less microcontroller I/O’s, and is not as picky when it comes to powering it.

The nixie tubes he chose for the project came from a lot sale on eBay, Russian surplus IN-12 tubes. He even managed to find an english datasheet for them!

[Read more...]

Once, Twice, Three Times a Nixie

Try as he might, [Localroger] can’t seem to throw away a certain board that started life in one of the first digital industrial scales, the NCI DigiFlex model 5775. He recently gave it a third career as a nixie clock with an alarm.

[Localroger] says the board dates to about 1975. It’s all TTL, no microprocessor anywhere. He was headed to the Dumpster with it in the mid-1980s, but realized that he could hack it into something useful. Since the display wasn’t multiplexed, it would be fairly easy. He used it as a BCD tester for about 10 years until the method fell out of fashion.

After a decade on the shelf, [Localroger] started off for the Dumpster once more with the board. The nixie tube display cried out for another chance to glow, so he decided to repurpose it into a remote-controlled bedside clock with an alarm. He installed a Parallax Propeller Protoboard with headers for easy removal and subsequent servicing of the 5775 board. He added a few things to the protoboard: a piezo element for the alarm, a SparkFun RTC module, an IR receiver, and vertically-oriented header so the PropPlug can be plugged in from the top. But that’s not all. [Localroger] designed a custom melamine-finished MDF enclosure and laser cut it, giving the edges a nice contrast. It’s so tough, he can put his ceramic lamp on top of it to save space on the nightstand.

Nixie tubes are becoming more scarce all the time. If you can’t find any, we humbly suggest rolling your own.

[Thanks Localroger!]

NES: Nixie Entertainment System

nixieNES

[Bradley W. Lewis] is no stranger to Nixie clock builds, and he felt his latest commission was missing something. Instead of merely mounting the Nixie clock into a case resembling an NES console, he goes full tilt and makes it into an NES console emulator. After some work on the milling machine, a wooden box has room to squeeze in a few new components. [Bradley] originally planned to mount only an Arduino with an ArduNIX shield to handle the Nixie clock, but the emulator demands some space saving. Flipping the Arduino on its side freed up plenty of room and the shield still easily connects to the adjacent Nixie tube board.

A Raspberry Pi serves as the console emulator and was mounted close to the side of the case to allow access to its HDMI port. The other ports from both the Arduino and RasPi stick out of the back, including an extension to the Pi’s RCA video out and buttons to set both the hour and minutes of the clock. The two surplus NES buttons on the front of the case control power to the RasPi and provide a reset function for the Nixie clock.

If that isn’t enough Nixie to satisfy you, check out the WiFi Nixie counter.

Spare parts pulled together into a Nixie clock

We’d like to dig around in [Small Scale Research's] parts bin. Apparently there’s good stuff in there because he managed to build this Nixie tube clock using mostly leftovers.

The chip driving the device is an ATtiny1634. We weren’t familiar with it so here’s a datasheet (pdf) if you’re curios as well. The microcontroller communicates with an old GPS module in order to keep perfect time. There is an external antenna for it which connects through the hole next to the red switch seen above. The high voltage driver is a repurposed backlight inverter which is fed 12V power from an old laptop supply.

The album linked above shows the build quite well and even includes full schematics. There are some fireworks when he encountered an issue with a pretty large cap shorting to a resistor leg. If this isn’t enough juicy detail for you there are a few more nuggets shared in the Reddit comments.

Nixie Clock Without a PCB

Looking for an artistic way to build circuits? Don’t want to design a PCB? The Lethal Nixie Tube Clock is a free form circuit that gives you the time one digit at a time. It uses a IN-1 Nixie tube to display the digits. This is driven by ten MPSA42 high voltage transistors. A IRF520 N-FET, inductor, and a diode are used as a switching power supply that generates the high voltage needed to drive the Nixie tube. It’s probably not lethal, but there are exposed high voltages in the cube. You’d definitely regret touching it.

An ATMega8 is used to control the clock. It drives the various digits of the Nixie tube, and generates a PWM output to switch the high voltage supply. Unfortunately, the schematic has been lost. If you’re interested in the switching supply, it’s likely similar to the one explained here.

Check out a video of the clock after the break.

Via Dangerous Prototypes

[Read more...]

A clock made out of some very weird tubes

If you’re like [Richard], you’ve got a few really rare components lying around. Maybe it’s a very weird micro or a really tiny CRT, but eventually you’ve got to build something with these parts. When [Richard] decided to put some ITS1A neon display tubes to use, he fell back to the old standby – a really awesome clock.

Unlike the lowly Nixie tube, the ITS1A tube is weird. It’s a neon seven-segment display that can be controlled directly from the pins of a microcontroller. It does this with the help of seven tiny thyratrons in each segment. Even though this tube has neon, the display isn’t the familiar neon orange-red. The tube emits a lovely green with the help of a phosphor coating.

With a single digit already incorporated into [Richard]‘s clock, he needed four indicators for the hours and minutes. After a failed experiment with a crazy 4-color, 16-pixel Melz ITM2-M display, he moved on to a simpler MTX90 thyratron indicator.

Using the same control scheme as his earlier numitron clock, Richard had a PCB made and wired everything up. The seven-segment tube indicates the value, and the indicator tubes indicates the position of the digit in the XX:XX standard. A very cool  build with parts you don’t see coming around often.

Follow

Get every new post delivered to your Inbox.

Join 92,137 other followers