The Development Of A Lightweight Wireless Protocol

BANO[Texane] had been thinking about how to monitor the state of his garage door from a remote place. The door itself isn’t around any power outlets, and is a few floors away from where his server would be located in his apartment. This presented a few design challenges – namely, the sensor itself should have a wireless connection to the server, and being low power would be a great idea. This led to the development of a minimalist framework for wireless communication┬áthat allows a sensor to run for weeks without a battery swap.

The wireless protocol itself is based on a simple key value pair; each individual sensor, coupled with a NRF905 radio, has passes an address, a key, and a value. There are allowances for checksums and acknowledgement, but as the PDF says, this is a very minimal protocol.

With the software out of the way, [Texane] turned to the hardware. The microcontroller is a simple Arduino clone, paired with a radio and a coin cell on a small board. The micro spends most of its time in a low power state, with the sensor, in this case a reed switch, tied to an interrupt pin.

There was a problem with the power consumption of the radio, though: when the short 17-byte message was transmitting, there was a significant voltage drop. This was okay with a fully charged battery, but with a partially drained coin cell, the possibility of brownouts was high. A big cap in parallel was enough to offset this voltage drop.

It’s still a little expensive for an all-in-one home automation and monitoring system, but developing a functional wireless protocol and the hardware to go with it is no small feat. It’s actually a great piece of kit that [Texane] is sure to find a few uses for.

Verifying A Wireless Protocol With RTLSDR


[Texane] is developing a system to monitor his garage door from his apartment. Being seven floors apart, running wires between the door and apartment wasn’t an option, so he turned to a wireless solution. Testing this wireless hardware in an apartment is no problem, but testing it in situ is a little more difficult. For that, he turned to software defined radio with an RTLSDR dongle.

The hardware for this project is based around a TI Stellaris board and a PTR8000 radio module. All the code for this project was written from scratch (Github here), making it questionable if the code worked on the first try. To test his code, [Texane] picked up one of those USB TV tuner dongles based around the RTL2832U chipset. This allowed him to monitor the frequencies around 433MHz for the packets his hardware should be sending.

After that, the only thing left to do was to write a frame decoder for his radio module. Luckily, the datasheet for the module made this task easy.

[Texane] has a frame decoder for the NRF905 radio module available in his Git. It’s not quite ready for serious applications, but for testing a simple radio link it’s more than enough.