Virtual Reality Expands Into the World of Rollercoasters with ‘The Augmented Thrill Ride Project’

sascha_vogel_amazed_1

A rollercoaster company in Germany called Mack Rides joined forces with a team of virtual reality developers in the spring of 2014 to create an experience like no other.

The idea came from [Thomas], a professor at the University of Applied Sciences Kaiserslautern who was working in the department of Virtual Design at the time. The thought of extending a real rollercoaster ride with an Oculus Rift was an intriguing one, so he approached Mack Rides with the experiment, and the ground-breaking research began.

Hundreds of tests were done over the following weeks and months, which provided insight into how we perceive time and space while inside VR. This led to some interesting discoveries. For one, the VR track inside the Rift could be more complex than the real one. This meant that the directions could be contorted into different angles without the user feeling much of a difference. Knowing this, the developers were able to unfold/extend the track well beyond what was possible in real life.

Another epiphany had to do with the rails, which actually didn’t have to be present in VR at all. In fact, it was better if the tracks weren’t there because the experience was much more exciting not knowing which way the ride was suddenly going to take. This made things exponentially more surprising and compelling.

By far the most startling revelation was the reduction in dizziness and motion sickness during the tests. This was attributed to the complex synchronization that the mind goes through when melding together g-forces and the actual rollercoaster rides with the virtual ones displayed inside the Oculus Rift.

[Read more...]

VR Bowling Game Combines an Oculus Rift with a Wii Remote

d [marclar83] was given an Oculus Rift so that he could prepare for an upcoming conference presentation. He began to download demos, getting familiar with the VR interface but was disappointed to find out that someone hadn’t developed a good virtual reality bowling experience yet. This prompted him to design a VR game that integrates a Wii Remote, recording the movements of the controller and sending accelerometer data to his computer.

The game he created is similar to Wii Sports Bowling but with the added bonus of being immersed in a virtual world with the Oculus Rift. The D-pad on the Wii Remote was programmed to switch stances and bowling methods, allowing the user to choose whether they want to throw the ball down the middle or curve it a long the way. Pressing the trigger button on the back started the swinging motion, and when released, the bowling ball shot down the alley at a high rate of speed crashing into the pins at the end.

Because the game was designed on the original DK1, the resolution of the images was a challenge that needed to be addressed, but [marclar83] solved this problem by implementing two user interfaces on the side of the screen that showed replays and depicted how many pins remained; proving to be a better experience for the gamer. This free public alpha version was made available for Windows, Mac, and Linux on the official VRBowling website. A video describing the project can be seen below. [Read more...]

Testing VR Limits with a Raspberry Pi

vrpi

Virtual Reality by function pushes the boundaries of what we perceive as existence, tricking the mind into believing that the computer generated environment that the user is thrust into actually contains a real place. So in the spirit of seeing what is possible in VR, a developer named [Jacques] hooked up a Raspberry Pi to an Oculus Rift. He used a computer graphics rendering API called OpenGL ES, which is much like any mobile platform found these days, to render a floating, rotating cube.

All his tests were done on a Release build which utilized the official vertex and fragment shaders. There was no attempt to optimize anything; not like there would be much to do anyways. The scene was rendered twice at 16 milliseconds per frame. From there, he attempted 27 ms per frame with texture, followed by 36 ms/frame, and then 45.

The code used can be found on [Jacques]‘s Github account. A simple improvement would use a Banana Pi for better processing speed. However, don’t expect any spectacular results with this type of setup. Really, the project only proves that it’s possible to minimize a VR experience into something that could become portable. And in the same vein, the Pi + Oculus integration can produce an uncomfortable lagging effect if things are not lined up properly. But once the energy/computing power issues are addressed, VR devices could transform into a more fashionable product like Google Glass, where a simple flip of a switch would toggle the view between VR and AR into a something more mixed. And then a motion sensing input camera like this Kinect-mapping space experiment could allow people all over the world to jump into the perspectives of other reality-pushing explorers. That’s all far down the line though, but this project lays the foundation for what the future might hold.

To see [Jacques]‘s full set up, view the video after the break.

[Read more...]

Hackaday Links: August 3, 2014

hackaday-links-chain

A ton of people sent in this video of crazy Russians who have taken a microwave, removed the magnetron, taped it to a broom, and turned it on. Don’t try this at home. Or near us.

You know the Google Cardboard kit that’s a real VR headset made of cardboard (and a smart phone)? Google may have gotten their inspiration from Oculus, because every Oculus Rift DK2 ships with a Samsung Galaxy Note 3 inside.

paul allen

Ever design a PCB and be disappointed by the quality of the silkscreen? [Paul Allen] has been defining the edges of his PCB labels with the copper layer, and the examples are dramatic. Etching copper is what you actually pay for when you fab a board, so it should come as no surprise that the quality is a little higher.

Dunk tanks are fun, but how about competitive dunk tanks? [Chad] built a dunk tank (really more of a ‘dunk shower’) out of a 2×4 tripod, a garbage can, and a few parts from a the toilet aisle of Home Depot’s plumbing department. Then he built a second. Set up both dunk showers across from each other, give two people a few balls, and see who gets soaked last. Looks fun.

Want a MAME cabinet, but don’t want it taking up room in your house? Build a MAME coffee table! Here’s the reddit thread. Maybe we’re old-fashioned, but we’d rather have a giant NES controller coffee table.

Last week we saw a 16-bobbin rope braiding machine, but odd braiding machines like this aren’t limited to fibers. Here’s a wire twisting machine for making RS422 cables. It only produces a single twisted pair, but that’s really all you need to create a cable. Somebody get some paracord and make some Cat5.

Cutting Ribbons with Robots and a Oculus Rift

PR2-GrandOpening

On June 26th, 2014, Clearpath Robotics opened up the doors to their brand new 12,000 square foot robot lair by bringing out a PR2 to cut the ceremonial ribbon and welcome everyone inside. And instead of just programming the ‘locate and destroy’ ribbon sequence, the co-founders opted to use an Oculus Rift to control the robot tearing through the material with flailing arms.

This was accomplished having Jake, the robot, utilize a Kinect 2.0 that fed skeleton tracking data via rosserial_windows, a windows-based set of extension for the Robot Operating System which we heard about in January. The software gathers in a stream of data points each with an X,Y,Z component allowing [Jake] to find himself within a 3D space.Then, the data was collected and published directly into the PR2’s brain. Inject a little python code, and the creature was able to route directions in order to move it’s arms.

Thus, by simply stepping in front of the Kinect 2.0, and putting on the Oculus Rift headset, anyone could teleoperate [Jake] to move around and wave its arms at oncoming ribbons. Once completed, [Jake] would leave the scene, journeying back into the newly created robot lair leaving pieces of nylon and polyester everywhere.

An earlier (un-smoothed) version of the full system can be seen after the break:

[Read more...]

Non-Lethal Electric Chair Brings the Death Row Experience Home

Non-Lethal electric chair for Oculus Rift Hackathon

One of our trusty tipsters named [Arman] wrote in to tell us about this awesome little Horror VR Hackathon that sought to create a non-lethal electric chair, for a seriously creepy and shocking experience.

[Arman] works in a small prototyping shop, so when a few guys from the local VR group called to ask for help building a non-lethal electric chair, he thought they were joking — until they showed up at the shop! Finally understanding what they really wanted to do, he hooked them up with an EL wire power supply (high voltage AC, low amperage) for their first prototype.

Unfortunately the EL power supply driver took too much juice, so they called [Arman] back the next day to hack together some of those joke gum shockers instead — he hooked them up to an Arduino and they work like a charm.  [Read more...]

The Crane Game, Oculus Style

crane We’re pretty sure the Hackaday demographic is a a person who sees a giant tower crane lifting beams and girders above a skyline and says, “that would be fun, at least until I have to go to the bathroom.” Realizing the people who own these cranes probably won’t let any regular joe off the street into the cabin, [Thomas] and [screen Name] (see, this is why we have brackets, kids) built their own miniature version with an Oculus Rift.

Instead of a crane that is hundreds of feet tall, the guys are using a much smaller version, just over a meter tall, that is remotely controlled through a computer via a serial connection. Just below the small plastic cab is a board with two wide-angle webcams. The video from these cameras are sent to the Oculus so the operator can see the boom swinging around, and the winch unwinding to pick up small objects.

The guys have also added a little bit of OpenCV to add color based object detection. This is somewhat useful, but there’s also an approximation of the distance to an object, something that would be very useful if you don’t have a three-inch tall spotter on the ground.

Video below.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,103 other followers