The GNU GPL Is An Enforceable Contract At Last

It would be difficult to imagine the technological enhancements to the world we live in today without open-source software. You will find it somewhere in most of your consumer electronics, in the unseen data centres of the cloud, in machines, gadgets, and tools, in fact almost anywhere a microcomputer is used in a product. The willingness of software developers to share their work freely under licences that guarantee its continued free propagation has been as large a contributor to the success of our tech economy as any hardware innovation.

Though open-source licences have been with us for decades now, there have been relatively few moments in which they have been truly tested in a court. There have been frequent licence violations in which closed-source products have been found to contain open-source software, but they have more often resulted in out-of-court settlement than lengthy public legal fights. Sometimes the open-source community has gained previously closed-source projects, as their licence violations have involved software whose licence terms included a requirement for a whole project in which it is included to have the same licence. These terms are sometimes referred to as viral clauses by open-source detractors, and the most famous such licence is the GNU GPL, or General Public Licence. If you have ever installed OpenWRT on a router you will have been a beneficiary of this: the project has its roots in the closed-source firmware for a Linksys router that was found to contain GPL code.

Now we have news of an interesting milestone for the legal enforceability of open-source licences, a judge in California has ruled that the GPL is an enforceable contract. Previous case-law had only gone as far as treating GPL violations as a copyright matter, while this case extends its protection to another level.

The case in question involves a Korean developer of productivity software, Hancom Office, who were found to have incorporated the open-source Postscript and PDF encoder Ghostscript into their products without paying its developer a licence fee. Thus their use of Ghostscript falls under the GPL licencing of its open-source public version, and it was  on this basis that Artifex, the developer of Ghostscript, brought the action.

It’s important to understand that this is not a win for Artifex, it is merely a decision on how the game can be played. They must now go forth and fight the case, but that they can do so on the basis of a contract breach rather than a copyright violation should help them as well as all future GPL-licenced developers who find themselves in the same position.

We’re not lawyers here at Hackaday, but if we were to venture an opinion based on gut feeling it would be that we’d expect this case to end in the same way as so many others, with a quiet out-of-court settlement and a lucrative commercial licencing deal for Artifex. But whichever way it ends the important precedent will have been set, the GNU GPL is now an enforceable contract in the eyes of the law. And that can only be a good thing.

Via Hacker News.

GNU logo, CC-BY-SA 2.0.

JeVois Machine Vision Camera Nails Demo Mode

JeVois is a small, open-source, smart machine vision camera that was funded on Kickstarter in early 2017. I backed it because cameras that embed machine vision elements are steadily growing more capable, and JeVois boasts an impressive range of features. It runs embedded Linux and can process video at high frame rates using OpenCV algorithms. It can run standalone, or as a USB camera streaming raw or pre-processed video to a host computer for further action. In either case it can communicate to (and be controlled by) other devices via serial port.

But none of that is what really struck me about the camera when I received my unit. What really stood out was the demo mode. The team behind JeVois nailed an effective demo mode for a complex device. That didn’t happen by accident, and the results are worth sharing.

Continue reading “JeVois Machine Vision Camera Nails Demo Mode”

Help Wanted: Open Source Oscilloscope on Rigol Hardware

We’ve often heard (and said) if you can’t hack it, you don’t own it. We noticed that [tmbinc] has issued a call for help on his latest project: developing new firmware and an FPGA configuration for the Rigol DS1054Z and similar scopes. It isn’t close to completion, but it isn’t a pipe dream either. [tmbinc] has successfully booted Linux.

There’s plenty left to do, though. He’s loading a boot loader via JTAG and booting Linux from the USB port. Clearly, you’d want to flash all that. Linux gives him use of the USB port, the LCD, the network jack, and the front panel LEDs and buttons. However, all of the actual scope electronics, the FPGA functions, and the communications between the processor and the FPGA are all forward work.

Continue reading “Help Wanted: Open Source Oscilloscope on Rigol Hardware”

MRRF 17: Lulzbot and IC3D Release Line Of Open Source Filament

Today at the Midwest RepRap Festival, Lulzbot and IC3D announced the creation of an Open Source filament.

While the RepRap project is the best example we have for what can be done with Open Source hardware, the stuff that makes 3D printers work – filament, motors, and to some extent the electronics – are tied up in trade secrets and proprietary processes. As you would expect from most industrial processes, there is an art and a science to making filament and now these secrets will be revealed.

IC3D Printers is a manufacturer of filament based in Ohio. This weekend at MRRF, [Michael Cao], founder and CEO of IC3D Printers announced they would be releasing all the information, data, suppliers, and techniques that go into producing their rolls of filament.

According to [Michael Cao], there won’t be much change for anyone who is already using IC3D filament – the materials and techniques used to produce this filament will remain the same. In the coming months, all of this data will be published and IC3D is working on an Open Source Hardware Certification for their filament.

This partnership between IC3D and Lulzbot is due in no small part to Lulzbot’s dedication to Open Source Hardware. This dedication is almost excessive, but until now there has been no option for Open Source filament. Now it exists, and the value of Open Source hardware is again apparent.

ZeroPhone gives Smartphones the Raspberry (Pi)

There are several open source phones out there these days, but all of them have a downside. Hard to obtain parts, hard to solder, or difficult programming systems abound. [Arsenijs] is looking to change all that with ZeroPhone. ZeroPhone is based upon the popular Raspberry Pi Zero. The $5 price tag of the CPU module means that you can build this entire phone for around $50 USD.

The radio module in the ZeroPhone is the well known SIM800L 2G module. 2G is going away or gone in many places, so [Arsenijs] is already researching more modern devices. An ESP8266 serves as the WiFi module with an OLED screen and code in python round out this phone. Sure, it’s not a fancy graphical touchscreen, but a full desktop is just a matter of connecting a display, mouse, and keyboard.

For the security conscious, the ZeroPhone provides a unique level of control. Since this is a Raspberry Pi running Linux, you choose which modules are included in the kernel, and which software is loaded in the filesystem. And with news that we may soon have a blobless Pi, the firmware hiding in the radio modules are the only black boxes still remaining.

If a Raspberry Pi is a bit too much for you to bite off, check out this Arduino based phone. Don’t want to do any soldering? Check out what you can do with a cheap Android phone and a bit of hacking.

Blob-less Raspberry Pi Linux Is A Step Closer

The Raspberry Pi single board computer has been an astounding success since its launch nearly five years ago, to the extent that as of last autumn it had sold ten million units with no sign of sales abating. It has delivered an extremely affordable and pretty powerful computer into the hands of hobbyists, youngsters, hackers, engineers and thousands of other groups, and its open-source Raspbian operating system has brought a useful Linux environment to places we might once have thought impossible.

The previous paragraph, we have to admit, is almost true. The Pi has sold a lot, it’s really useful and lots of people use it, but is Raspbian open-source? Not strictly. Because the Broadcom silicon that powers the Pi has a significant amount of proprietary tech that the chipmaker has been unwilling to let us peer too closely at, each and every Raspberry Pi operating system has shipped with a precompiled binary blob containing the proprietary Broadcom code, and of course that’s the bit that isn’t open source. It hasn’t been a problem for most Pi users as it’s understood to be part of the trade-off that enabled the board’s creators to bring it to us at an affordable price back in 2012, but for open-source purists it’s been something of a thorn in the side of the little board from Cambridge.

This is not to say that all is lost on the blob-free Pi front. Aided by a partial pulling back of the curtain of secrecy by Broadcom in 2014, work has quietly been progressing, and we now have the announcement from [Kristina Brooks] that a minimal Linux kernel can boot from her latest open firmware efforts. You won’t be booting a blob-free Raspbian any time soon as there are bugs to fix and USB, DMA, and video hardware has still to receive full support, but it’s a significant step. We won’t pretend to be Broadcom firmware gurus as we’re simply reporting the work, but if it’s your specialty you can find the code in its GitHub repository. Meanwhile, we look forward to future progress on this very interesting project.

We reported on the partial Broadcom release back in 2014. At the time, the Raspberry Pi people offered a prize to the first person running a native Quake III game on their hardware, sadly though they note the competition is closed they haven’t linked to the winning entry.

Open-Source Parametric CAD in Your Browser

Until recently, computer-aided design (CAD) software was really only used by engineering companies who could afford to pay thousands of dollars a year per license. The available software, while very powerful, had a very high learning curve and took a lot of training and experience to master. But, with the rise of hobbyist 3D printing, a number of much more simple CAD programs became available.

While these programs certainly helped makers get into 3D modeling, most had serious limitations. Only a few have been truly open-source, and even fewer have been both open-source and parametric. Parametric CAD allows you to create 3D models based on a series of parameters, such as defining a cube by its origin and dimensions. This is in contrast to sculpting style 3D modeling software, which is controlled much more visually. The benefit of parametric modeling is that parameters can be changed later, and the model can be updated on the fly. Features can also be defined mathematically, so that they change in relation to each other.

While still in its infancy, JS.Sketcher is seeking to fill that niche. It is 100% open-source, runs in your browser using only JavaScript, and is fully parametric (with both constraints and editable dimensions). At this time, available features are still pretty limited and simple. You can: extrude/cut, revolve, shell, and do boolean operations with solids. More advanced features aren’t available yet, but hopefully will be added in the future.

Continue reading “Open-Source Parametric CAD in Your Browser”