Making Visual Anagrams, With Help From Machine Learning

[Daniel Geng] and others have an interesting system of generating multi-view optical illusions, or visual anagrams. Such images have more than one “correct” view and visual interpretation.

What’s more, there are quite a few different methods on display: 90 degree flips and other (orthogonal) image rotations, color inversions, jigsaw permutations, and more. The project page has a generous number of examples, so go check them out!

The team’s method uses pre-trained diffusion models — more commonly known as the secret sauce inside image-generating AIs — to evaluate and work to combine the differences between different images, and try to combine and apply it in a way that results in the model generating a good visual result. While conceptually straightforward, this process wasn’t really something that could work without diffusion models driven by modern machine learning techniques.

The visual_anagrams GitHub repository has code and the research paper goes into details on implementation, limitations, and gives guidance on obtaining good results. Image generation is just one of the rapidly-evolving aspects of recent innovations, and it’s always interesting to see unusual applications like this one.

Moon moving from inside a large glass sphere into screens of two vintage television sets

Blending Pepper’s Ghost, Synths, And Vintage TVs

We were recently tipped off to the work of [Joshua Ellingson], and digging in, we found an extensive collection of art and ongoing experiments, with synthesizers deforming and driving old black-and-white clips played on vintage television sets, objects jumping from screens into the real world and back, and cathode ray tube oscilloscopes drawing graphics in the air (loud sound!) (nitter). It’s recommended that you check out the short showcase videos we embedded below before you continue reading, because transcribing these visuals into words won’t do them justice.

In case you’re not up for a video, however, we shall try transcribing them anyway. Animals, shapes and figures appear in the real world, bound by glass spheres and containers, using the technique known as Pepper’s Ghost. A variety of screens used for creating that illusion – sometimes it’s a tablet, and sometimes it’s an old television set rested upside down on top of a glass aquarium. Vintage television sets are involved quite often in [Ellingson]’s experiments, typically found playing movie scenes and clips from their appropriate eras, or even used as one of the locations that a Pepper’s Ghost-enchanted object could move into — firmly a part of the same imaginary world turned real.

It’s not always that things move from a TV screen into their glass boundary, gaining an extra dimension in the process, but when it happens, the synchronization is impeccable. All of that is backed by — and usually controlled by — Moog synthesizer sounds, knob turns driving video distortions or aspects of an object movement. Not all of his clips have synthesizers, old TVs, or Pepper’s Ghost illusion in them, but every experiment of his contains at least two out of these three, working in unison to create impressions. And as much as the art value is undeniable, [Ellingson] also adds a whole lot of hacker value for us to take away!

[Ellingson] understands what goes into building optical illusions like Pepper’s Ghost — using a variety of different glassware, from Erlenmeyer flasks to teapots, producing a consistent and ongoing stream of new ideas with unique spins on them. His aim is to share and create beyond what his art can achieve, which is why he encourages us to try it out ourselves — with this one minute video of a quick Pepper’s Ghost build, using nothing but a generic tablet, an emptied-out plastic snow globe and a piece of cheap transparency film used for school projectors. If you want to go beyond, he’s made an extensive tutorial on illusions of the kind he does, their simplicities and complexities, and all the different ways you can build one.

We all benefit when an artist finds a technology and starts playing with it, closing the divide between technology and art – and by extension, the divide between technology and nature. Sometimes, it’s flowing light art installations where you are a boulder in route of plankton’s movement, other times, it’s through-hole component-packed printed circuit birds that sing not unlike the non-printed-circuit ones, or manipulation of CRT displays with function generator-driven coils to offset the beam and turn the image into a pattern of lines.

Continue reading “Blending Pepper’s Ghost, Synths, And Vintage TVs”

Escape Tunnel In Your Living Room: A Different Take On The Infinity Mirror

Most infinity mirrors are just minor variations on the same old recipe. Take a frame, add a normal mirror in the back, a one-way mirror on the front, and put some LEDs between them. [Stevens Workshop] took a slightly different approach and built an escape tunnel coffee table that really caught our attention.

To create the tunnel and ladder illusion, [Steven] kept the mirrors, but made a deeper wood frame, installed a light bulb in an industrial-looking socket instead of the usual LEDs, and added a single ladder rung. The end result makes for a very interesting conversation piece, and some of us prefer it to the multicolored LED look. Though he added his own touches, the idea was actually borrowed from from [asthhvdrt36] and [BreezleSprouts] on Reddit who used slightly different light and ladder designs.

While there’s nothing groundbreaking here, it’s certainly a case of “why didn’t I think of that”. Sometimes the old and familiar just needs a different perspective to create something fascinating. One of the advantages of the classic infinity mirror is the thin profile, which we’ve seen integrated into everything from guitars to coasters.

Dancing Arrows To Break Your Brain

Last year, mathematician and professional optical illusionist [Kokichi Sugihara] came up with an arrow that only points one way. Technically, it’s ‘anomalous mirror symmetry’, but if you print this arrow and look at it juuuussst right, it appears this arrow only points one way.

[Ali] had the idea to turn this arrow illusion into something motorized, and for that he turned to 3D printing. The models for the illusion arrows were already available, but there had to be a way to turn a single arrow into an art installation. For that, you just need a few 9g servos. [Ali] slightly modified his servos so they would turn a full 180 degrees, and designed a magnetic mount to allow easy swap-out of these arrows.

The servos are attached to a 3D printed frame with heat-staked threaded inserts, and driven by a Pololu servo driver. The effect is great, with multiple arrows twisting and turning but still only appearing to point to the right. [Ali] put together two videos of this arrow illusion, one that’s effectively a build guide, and of course all the STLs are available in a link in the description.

Continue reading “Dancing Arrows To Break Your Brain”

Hack Your Brain: The McCollough Effect

There is a fascinating brain reaction known as the McCollough Effect which is like side-loading malicious code through your eyeballs. Although this looks and smells like an optical illusion, the science would argue otherwise. What Celeste McCollough observed in 1965 can be described as a contingent aftereffect although we refer to this as “The McCollough Effect” due to McCollough being the first to recognize this phenomena. It’s something that can’t be unseen… sometimes affecting your vision for months!

I am not suggesting that you experience the McCollough Effect yourself. We’ll look at the phenomena of the McCollough Effect, and it can be understood without subjecting yourself to it. If you must experience the McCollough Effect you do so at your own risk (here it is presented as a video). But read on to understand what is happening before you take the plunge.

Continue reading “Hack Your Brain: The McCollough Effect”

Before Film There Were Zoetropes. Now We Have 3D Printed Zoetropes!

Reddit user [eyelandarts] has produced a rather unique 3D printing project. A 3D printed Zoetrope.

You see, a zoetrope was a device that created an animation effect that pre-dates film technology. It would create the illusion of motion much like a flip book does, but with a spinning cylindrical wall with slots cut into it. As the cylinder spins, you catch a glimpse of the animation through the slots. But, it’s just a 2-dimensional animation — what if you replaced it with an ever changing 3D model?

It’s actually been done before. A long time ago in fact. In 1887, [Etienne-Jules Marey] created a large zoetrope to animate plaster models of a bird in flight. Fast forward to today, and [eyelandarts] has 3D printed something similar — but ditched the cylindrical wall. Instead, a strobe light is used to see the animation!

The end result is quite awesome if we do say so our-selves. For another fun take on Zoetropes — how about a digital one made out of tiny LCD screens?

Siezure-warning… there’s a very flash-tastic demo gif embedded after the break if you’re brave enough to view such a thing.

Continue reading “Before Film There Were Zoetropes. Now We Have 3D Printed Zoetropes!”

Spliced Animations Come To Life On Their Pages

Remember those flipbooks you doodled into your history textbooks while you waited for the lunch bell? [Maric] takes the general principles of flipbooks and turns them on their head, giving our brain a whirl in the process. By splicing multiple frames into one image, he can bring animations to life onto a single page.

The technique is simple, but yields impressive results. By overlaying a pattern of vertical black bars onto his image, only a small fraction of the image is visible at any given point. The gaps in the pattern belong to a single frame from the animation. As [Maric] slides the pattern over the image, subsequent frames are revealed to our eyes, and our brain fills in the rest.

A closer look reveals more detail about the constraints imposed on these animations. In this case, the number of frames per animation loop is given by the widths in the transparency pattern. Specifically, it is the number of transparent slits that could fit, side-by-side, within an adjacent black rectangle.

The trick that makes this demonstration work so nicely is that the animated clips finish where they start, resulting in a clean, continuous illusion.

Don’t believe what you see? [Maric] has linked the pattern and images on his video so you can try them for yourself. Give them a go, and let us know what you think in the comments.

Continue reading “Spliced Animations Come To Life On Their Pages”