Certification For Open Source Hardware Announced

Today at the Open Hardware Summit in Portland, Alicia Gibb and Michael Weinberg of the Open Source Hardware Association (OSHWA) launched the Open Source Hardware Certification program. It’s live, and you can certify your own hardware as Open Hardware right now.

What Is Open Source Hardware?

Open Source Hardware can’t be defined without first discussing open source software. At its very core, open source software is just a copyright hack, enabled by a worldwide universal computer network. The rise of open source software is tied to the increasing ease of distributing said software, either through BBSes, Usenet, and the web. Likewise, Open Source Hardware is tied to the ease of distributing, modifying, and building hardware.

In the 1980s, there were no services that could deliver a custom circuit board to anywhere on the planet for a dollar per square inch. When open software began, CNC machines were expensive tools, now you can build a very good machine for just a week’s wages. We are currently living at the dawn of Open Source Hardware, enabled by the creation of Open Source design tools that have themselves been used to create physical tools. Inexpensive 3D printers, open source oscilloscopes, circuit board plotters, and the entire hackerspace movement are as revolutionary as the Internet. These devices and the Internet are the foundations for Open Hardware and software, respectively.  The objections to why hardware is incompatible with Open Source no longer apply and small-scale manufacturing techniques are only going to get better.

Continue reading “Certification For Open Source Hardware Announced”

Ask Hackaday: Open Fire Suppression and Safety Standards

We posted about a 3D printer fire a while back. An attendee of the Midwest RepRap Fest had left his printer alone only to find its immolated remains on his return. In the spirit of open source, naturally, he shared his experience with the rest of us. It occurred to me that hackers are never powerless and there are active things to be done and avenues to explore.

An animation of a commercial fires suppression system, fire trace's, operation. http://www.firetrace.com/fire-suppression-systems/direct-release-systems/
An animation of a commercial fires suppression system, fire trace’s, operation. Firetrace‘s website has more.

There are really fantastic commercial fire extinguishing systems out there. One implementation, which is commonly deployed in cabinets and machining centers, is a plastic tube pressurized with an extinguishing agent by a connected tank. When a fire breaks out the tube melts at the hottest locations, automatically spraying the area with a suppressant. Variations of this involve a metal nozzle filled with a wax or plastic blended to melt at a certain temperature, much like the overhead fire sprinklers.

This system is also used inside engine compartments with success. For example, this item on amazon, is nothing but a pressurized plastic tube with a gauge on one end. Since the inside of an engine compartment can be treated as an enclosed space, very little fire suppressant is needed to extinguish an unexpected flame. It is important to note that this system works in a high temperature environment like an engine compartment, which bodes well for enclosed build envelopes on 3D printers.

BlazeCut Automatic Fire Suppression System 6' TV200FA, Automotive Extinguisher
BlazeCut Automatic Fire Suppression System 6′ TV200FA, Automotive Extinguisher Installed under Car Hood.

Another option is to construct a suppressant mine. A Japanese and a Thai company have both come out with a throwable fire extinguisher. In the Japanese device, the outside of the extinguisher is a breakable glass vial which shatters upon impact; releasing the agent. The Thai device looks like a volley ball, and releases the agent upon the application of heat. This device seems like a better candidate for 3D printing or home projects. Imagine a small rectangular pack with adhesive on one side that sits near the possible fire points of the printer, such as under the bed or above the nozzle. In the event of a fire, the casing will melt and the system will automatically deploy a spray of extinguishing agent.

Most of the chemicals used in these constructions are benign and readily available. High pressure tubing and waxes can all be purchased and the desired melt points can be aligned with their datasheets by need. Plastic sheets are not hard to procure. These offer a nice solution due to their entirely passive nature. They don’t need power to operate and rely entirely on the properties of the materials they are constructed out of.

There are other options in active systems. Hackaday readers suggested things such as flame sensors for adding automatic cut-offs in case of a fire. Thermal fuses can also be considered in some cases. There are other tricks too, which are less kosher but will work nonetheless. For example, placing a critical wire, fuse, or component in the likely path of a fire so that it is destroyed first, stopping the operation of the device quickly. These avenues should be explored. At minimum there should be at least one project that uses a Raspberry Pi and an Arduino to tweet that fire suppression failed and the house is on fire.

The Thai invention is a volleyball that melts upon contact with flame and releases a pressurized extinguishing agent.

Some of the big questions to ask are on the legal and ethical side. If someone started selling kits for a DIY fire suppression system and a fire ends up destroying someone’s property despite the device, who is responsible? Is it even safe to post instructions? What if a kit prematurely sets off and injures someone. I imagine a big part of the cost of these professional systems is some sort of liability insurance and certification. Still, putting a six hundred dollar fire suppression system on a six hundred dollar printer seems silly, and something is better than nothing.

Lastly, the comments directed a ton of flak towards the certification systems. There should be no reason that open source projects can’t produce their own specification for safety. An open source specification without an agency naturally couldn’t provide a legal defense against property damage, but a thought-out test program would provide piece of mind. For example, in the case of 3D printers, one could have a set of basic fail-safe tests. One example would be bringing the printer up to temperature and rapidly disconnecting the thermistor, does the printer erupt into fire? No? Good, it meets the spec. I wouldn’t mind knowing that the latest version of Marlin was tested on the popular boards and still met the community specification for fire safety.

As far as I can tell, there’s been very little work in open sourcing safety systems or in providing a testing framework for ensuring open hardware meets basic safety conditions. Many of you have experience with these systems. Some of you have gone through the entirely un-enjoyable process of getting a UL certification. What does Hackaday think?

The Open, Hackable Electronic Conference Badge

Electronic conference badges have been around for at least a decade now, and they all have the same faults. They’re really only meant to be used for a few days, conference organizers and attendees expect the badge to be cheap, and because of the nature of a conference badge, the code just works, and documentation is sparse.  Surely there’s a better way.

Enter the Hackable Electronic Badge. Ever since Parallax started building electronic conference badges for DEF CON, they’ve gotten a lot of requests to build badges for other conventions. Producing tens of thousands of badges makes Parallax the go-to people for your conference badge needs, but the requests for badges are always constrained by schedules that are too short, price expectations that are too low, and volumes that are unknown.

There’s a market out there for electronic conference badges, and this is Parallax’s solution to a recurring problem. They’re building a badge for all conferences, and a platform that can be (relatively) easily modified while still retaining all its core functionality.

Continue reading “The Open, Hackable Electronic Conference Badge”

Open Hardware Summit 2011 Call for Submissions

The Open Hardware Summit is gearing up for their second annual conference, which is to be held on September 15th, 2011 in New York City. The summit aims to be a venue where users can present, discuss, and learn about open hardware of all kinds. Hot on the heels of the Open Hardware definition announcement, the summit is bound to be an exciting gathering of hackers, makers and hobbyists of all kinds.

The organizers are looking to you, the hacker community, to help put make the event a memorable one. They have put out an official call for submissions in several broad formats. They are interested in talks, breakout sessions, and project demos on topics such as manufacturing, diy technology, open hardware in the enterprise, and more.

If you think you have something interesting to share with the open hardware community, make your voice heard, and be sure to get your submissions in before the June 24th deadline!

[via NYC Resistor]

BAMF2011: Lasersaur is one BIG laser cutter!

Psst…wanna buy a laser cutter, but not ready to sell your internal organs? Nortd Labs’ Lasersaur project aims to create an open source large-format laser cutter/engraver that undercuts (har har!) the cost of commercial models by an order of magnitude.

Continue reading “BAMF2011: Lasersaur is one BIG laser cutter!”

OSHW Logo Announced

The results are in and the new Open Hardware logo has been selected! After tallying nearly 9,000 votes it has been decided that “Golden Orb” by Macklin Chaffe will now represent the OSHW definition v1.0.

Rest assured that despite earlier controversy regarding a few users that had submitted a very large number of duplicate votes (over 3,100 in all), the results have been cleaned up and validated prior to announcing the winner.

If you agree with the definition you can now go ahead and use the logo on your creations! Some creative individuals at this Open Hardware Summit forum have made it easy for you with logos of varying sizes, colors, and fill – perfect for application on any background. Here you will also find vector-based versions and even an Eagle parts library for inclusion on your next board’s silkscreen!

[Jason] at MrDecals.com has also generously offered 3 free decals of the new logo to anyone who asks – just pay for shipping. Please note that this is not a paid advertisement, [Jason] received permission from opensourcehardware.org to run the promotion and $1 for US shipping seems very reasonable. We are guessing from the responses to previous giveaways that many HackaDay readers might be interested!

We personally love the way that the new logo keeps with the feel of the Open Source Intiative logo and can’t wait to see what hardware it starts showing up on!

Thanks for ruining a good thing, or TRYING to!

It seems that there has been some shenanigans happening with the OSHW logo voting page as some are using scripts to game the system for their favorite design. Why? Who knows…  How? Well one of the advocates of OSHW [Bill Porter] set about figuring that out, and things should be patched up now, though that still leaves 3,122 faulty votes to weed out on the final day (April 5th).

While it is hard to imagine how someone would be so attached to a logo to write a script just to game votes,  its not that surprising considering that we can be a pretty outgoing bunch when it comes to certain topics. Organizers are asking if you’re one of the listed IP addresses, and had good intentions to fess up, and tell which logo(s) you voted for to make the process easier. If not, well, “this is not going to stop everyone’s good efforts.”

If you’re just now getting wind of the OSHW logo voting check out our previous article highlighting this event, and to get more details.