Designing Products With Injection Molding in Mind

3D printing is a technique we’ve all been using for ages at home, or via Shapeways, but if you are designing a product, 3D printing will only get you so far. It’s crude, slow, expensive, and has lots of limitations. While it’s great for the prototyping stage, ultimately products manufactured in volume will be manufactured using another method, and most likely it will be injection molding. Knowing how to design a part for injection molding means you can start prototyping with 3D printing, confident that you’ll be able to move to a mold without major changes to the design.

The 2017 Hackaday Prize includes a $30,000 prize for Best Product as we seek products that not only show a great idea, but are designed for manufacturing and have thought through what it takes to get them into the hands of the users. Some of the entries seem to be keenly aware of the challenges associated with moving from prototyping to production. Here are some examples of best practices when prototyping with future injection molding in mind.

Continue reading “Designing Products With Injection Molding in Mind”

To Deal with Plastic Trash, All You Need is Bugs

Outlawed now in some places, or only available to tote your purchases at a ridiculous premium, the billions of “T-shirt” bags used every year present a serious waste management problem. Whether blowing across the landscape like synthetic tumbleweeds, floating in the ocean as ersatz jellyfish, or clogging up municipal waste streams, finding a way to deal with them could really make a difference. And finding a bug that eats polyethylene and poops antifreeze might be a great first step in bioremediating the mess.

As with many scientific discoveries, learning about the useful and unexpected eating habits of the larval stage of the Greater Wax Moth Galleria mellonella can be chalked up to serendipity. It began when biochemist [Federica Bertocchini] cleaned a wax moth infestation from her beehive. She put the beeswax-loving pests in a plastic bag, later finding they had chewed their way out. Intrigued, she and [Paolo Bombelli] ran some experiments using the bugs. They showed the mechanism wasn’t just mechanical and that the worms were digesting the polyethylene, to the tune of 92 mg consumed for 100 worms in 12 hours. That’s about 1,000 times faster than bioremediation with bacteria.

Furthermore, the bugs excrete ethylene glycol, a useful industrial chemical, in the process. Finally, to see if the process can scale, the researchers showed that a homogenate of wax moth larvae could digest PE sheets. This could lead to an industrial process if the enzymes involved can be isolated and engineered. The letter describing the process is a fascinating read.

While this one may not a classically hackish way to deal with plastic recycling, the potential for this method is huge. We look forward to seeing where this goes.

[Images: César Hernández/CSIC]

Broken Plastic? No problem!

When a computer case has survived several decades from being a new toy through being an unloved relic to being rediscovered and finding its way into the hands of an enthusiast, it is inevitable that it will have picked up some damage along the way. It will be scuffed, maybe cracked, and often broken. If it has faced the ordeal of an international courier after an eBay sale then the likelihood of a break increases significantly.

If you receive a vintage computer in the post and find it cracked or broken, never fear. [Drygol] has a solution, a guide to plastic welding with a soldering iron.

After a thorough cleaning, the technique is to hold the sides of the break together, run the iron along it to melt the plastic together, and scrape the overflowed plastic back into the resulting trench before it solidifies. With careful sanding, a spot of polyester putty, and some spray paint, the broken case can be returned to new condition.

There is a video showing the process, in this case repairing a crack on a Commodore 64 case.

Continue reading “Broken Plastic? No problem!”

A Fountain of Superhydrophobic Art

Superhydrophobic coating finds a new application in art through [Arthur Carabott] in the form of a bizarre fountain.

A Master’s student in the Global Innovation Design course at the London Royal College of Art, [Carabott] achieved the effect by leaving parts of the laser-cut acrylic untouched by Rust-oleum’s NeverWet Multisurface coating. A 3d printed spigot mounted high above the surface imparts greater velocity to the impacting water so as it hits the acrylic the liquid forms into channels giving the impression of something surreal. Indeed — his design is inspired by the optical illusions of Japanese mathematician Kokichi Sugihara which attempt to realize the impossible artwork of M.C. Escher. The effect is worthy of a double take.

Continue reading “A Fountain of Superhydrophobic Art”

Scratch-Fabricated Plastic Gobbling Shredder Brings Recycling Home

[Jason Knight], an intern at FabLab RUC, has worked hard for 9 months to make a sheet plastics shredder for HDPE and LDPE from things like plastic bags, bubble wrap and air cushion packaging with the goal of recycling the shredded plastic. Why shred these things? When broken down to smaller pieces they can be melted in a consumer grade oven (like where you cook your frozen pizzas) then molded into new objects or extruded into 3D printing filament.

We especially like his big homemade 1.1 inch (30mm) thick wooden gears, for transferring the rotation from the motor to the cutting shafts while giving a step up in torque. As you can see in the video below, the gears definitely add an extra look of power to the machine.

The blades are the shape you most often see in shredders, gear-like disks side-by-side with teeth cut from them that pull the plastic in while shredding it (in contrast to this lower-throughput experimental DIY shredder made with two steel pipes). [Jason’s] multiple teeth are a bit of work to fabricate — not only were all the teeth milled from sheet metal but they then had to be individually sanded to remove burrs from the edges. It was worth it, as this has no problem chewing waste plastics to pieces.

Shredders can be dangerous machines for wandering fingers so [Jason] added a few safety features. Those include a drawer that you open to insert your plastic into the shredding area and a guard that completely surrounds the gears. And both features include transparent plastic areas so that you can still watch the impressive working parts in action.

Continue reading “Scratch-Fabricated Plastic Gobbling Shredder Brings Recycling Home”

Think Globally, Build Locally With These Open-Source Recycling Machines

Walk on almost any beach or look on the side of most roads and you’ll see the bottles, bags, and cast-off scraps of a polymeric alphabet soup – HDPE, PET, ABS, PP, PS. Municipal recycling programs might help, but what would really solve the problem would be decentralized recycling, and these open-source plastics recycling machines might just jump-start that effort.

We looked at [Precious Plastic] two years back, and their open-source plans for small-scale plastic recycling machines have come a long way since then. They currently include a shredder, a compression molder, an injection molder, and a filament extruder. The plans specify some parts that need to be custom fabricated, like the shredder’s laser-cut stainless steel teeth, but most can be harvested from a scrapyard. As you can see from the videos after the break, metal and electrical fabrication skills are assumed, but the builds are well within the reach of most hackers. Plans for more machines are in the works, and there’s plenty of room to expand and improve upon the designs.

We think [Precious Plastic] is onto something here. Maybe a lot of small recyclers is a better approach than huge municipal efforts, which don’t seem to be doing much to help.  Decentralized recycling can create markets that large-scale manufacturing can’t be bothered to tap, especially in the developing world. After all, we’ve already seen a plastic recycling factory built from recycled parts making cool stuff in Brazil.

Continue reading “Think Globally, Build Locally With These Open-Source Recycling Machines”

Ask Hackaday: Is PLA Biodegradable?

The most popular plastic for 3D printers is PLA – polylactic acid – a plastic that’s either derived from corn starch, inedible plant detritus, or sugar cane, depending where in the world it was manufactured. Being derived from natural materials, PLA is marketed as being biodegradable. You don’t need to worry about low-poly Pokemon and other plastic trinkets filling landfills when you’re printing with PLA, all these plastic baubles will return to the Earth from whence it came.

3D printers have been around for a few years now, and now objects printed in PLA have been around the sun a few times. A few of these objects have been completely forgotten. How’s that claim of being biodegradable holding up? The results are mixed, and as always, more data is needed.

A few weeks ago, [LazyGecko] found one of his first experiments in 3D printing. In 2012, he was experimenting with tie dying PLA prints by putting his prints in a jar filled with water and blue dye. This jar was then placed in the back of his cupboard and quickly forgotten. 3.5 years later, [LazyGecko] remembered his experiment. Absolutely nothing happened, save for a little bit of blue dye turning the print a pastel baby blue. The print looks and feels exactly like the day it came off the printer.

[LazyGecko]’s blog post was noticed by [Bill Waters], and he has one datum that points to PLA being biodegradable. In 2015, [Bill] printed a filter basket for his fish tank. The first filter basket worked well, but made a small design change a week later, printed out another, and put the first print in storage. He now has two nearly identical prints, one in constant use in a biologically interesting environment, the other sitting on a shelf for a year.

[Bill]’s inadvertent experiment is very close to the best possible experimental design to make the case for PLA biodegradability. The 3D printed filter basket in constant use for a year suffered significant breakdown, and the honeycomb walls are starting to crumble. The ‘inert’ printed filter basket looks like it just came off the build plate.

If that’s not confusing enough, [Bill] also has another print that has spent a year in a fish tank. This end cap for a filter spray bar didn’t see any degradation, despite being underwater in a biologically active environment. The environment is a little different from a filter basket, though; an aquarium filter is designed to break down organics.

To answer the question, ‘is PLA biodegradable,’ the most accurate answer is, ‘maybe’. Three data points in uncontrolled environments isn’t enough to draw any conclusions. There are, undoubtedly, more forgotten 3D prints out there, and more data to back up the claim of PLA being biodegradable.

This is where you come in. Do you have some forgotten prints out there? Your input is needed, the fruits of your labors are evidence, your prints might be decaying and we want to know about it below.