Blending real objects with 3D prints

It’s very subtle, but if you saw [Greg]‘s 3D printed stone to Lego adapter while walking down the street, it might just cause you to stop mid-stride.

This modification to real objects begin with [Greg] taking dozens of pictures of the target object at many different angles. These pictures are then imported into Agisoft PhotoScan which takes all these photos and converts it into a very high-resolution, full-color point cloud.

After precisely measuring the real-world dimensions of the object to be modeled, [Greg] imported his point cloud into Blender and got started on the actual 3D modeling task. By reconstructing the original sandstone block in Blender, [Greg] was also able to model Lego parts.After subtracting the part of the model above the Lego parts, [Greg] had a bizarre-looking adapter that adapts Lego pieces to a real-life stone block.

It’s a very, very cool projet that demonstrates how good [Greg] is at making 3D models of real objects and modeling them inside a computer. After the break you can see a walkthrough of his work process, an impressive amount of expertise wrapped up in making the world just a little more strange.

Continue reading “Blending real objects with 3D prints”

Visualizing water droplets and building a CT scanner

Since his nerves were wracked by presenting his project to an absurdly large crowd at this year’s SIGGRAPH, [James] is finally ready to share his method of mixing fluids via optical tomography with a much larger audience: the readership of Hackaday.

[James]‘ project focuses on the problem of modeling mixing liquids from a multi-camera setup. The hardware is fairly basic, just 16 consumer-level video cameras arranged in a semicircle around a glass beaker full of water.

When [James] injects a little dye into the water, the diffusing cloud is captured by a handful of Sony camcorders. The images from these camcorders are sent through an algorithm that selects one point in the cloud and performs a random walk to find every other point in the cloud of liquid dye.

The result of all this computation is a literal volumetric cloud, allowing [James] to render, slice, and cut the cloud of dye any way he chooses. You can see the videos produced from this very cool build after the break.

Continue reading “Visualizing water droplets and building a CT scanner”