monoPong: A CMOS 1-D Pong

We’ve seen a few 1-D pong games recently, and they’ve all be controlled using microcontrollers. Inspired by some of these hacks, [mischka] built the monoPong using a handful of logic chips.

The monoPong has four major components. A 555 timer in astable mode provides a clock source which is fed into a 4510 decade counter, which connects to a 4028 BCD to decimal decoder to drive the LEDs. Finally, a 4011 NAND gate IC is used to deal with the button presses. Two of the NAND gates form a RS flip-flop, and the other two NAND each player’s button with the last LED on the player’s side of the strip. If the player hits the button when their LED is on, the RS flip-flop toggles and changes the decade counter from count up to count down mode. This makes the ball bounce back.

[mischka] finished the project off by putting it in a wooden box and drilling holes for the LEDs, buttons, and a power switch. The final product looks pretty good, and is a great example of how you can use a couple logic chips instead of a microcontroller.

After the break, watch a quick game of monoPong.

Continue reading “monoPong: A CMOS 1-D Pong”

One dimensional PONG, take two

Needing a Christmas present for his 4- and 5-year-old nieces, [John] built a one-dimensional PONG game, sure to be the delight of rosy-cheeked children on a Christmas morn.

The new and improved 1D PONG game is built around a digital RGB LED strip with an LPD8806 LED controller. The speed of the ‘ball’ is controlled by a pot on one side of the game. With each player pressing their button at the right time, the ball bounces back to the other player. Missing the ball awards a point to the other team and most likely an increase in the player’s frustration, greatly increasing the risk of this game being thrown across the room.

While it’s not an obscenely long 1D PONG game like [Jason]’s previous 5 meter version, it’s more than enough to keep a pair of kids occupied for more than a few minutes, a remarkable achievement for just a microcontroller, buttons, and a piece of LED strip.

You can get [John]’s AVR code in this pastebin or just check out the video after the break.

Continue reading “One dimensional PONG, take two”

Retroball or Super Pong Table Grows Up

pong-table

Retroball is, as its Kickstarter campaign says, “Retro Fun for up to Four Players.” What you might not know, is that it’s ancestor was featured here earlier last year. With a year and a half of development underway, the build looks spectacular, and the people in their promo video look like they’re having lots of fun (obviously).

The whole concept of the game is that it has up to four players that each manipulate a paddle as in the classic Pong game. The obvious difference is that there are four players, and everything is played on a 32 x 32 LED array.

Although it looks like fun in it’s stock form, readers of Hack a Day will most likely start thinking about how they could modify it for their own uses. Everything is open source, and they promise to release the documentation for this project. On the other hand, if you can’t wait, or would rather build something very similar, check out [Brad]’s original Instructable article!

One dimensional PONG is a great use for LED strips

[Jason] has had a five meter addressable RGB LED strip lying around for a while, and only recently came up with a good idea of what to use it for. He came up with One Dimensional PONG, and it looks like it’s a blast to play. Instead of moving a paddle up and down, [Jason]’s 1D PONG game requires the players to stomp on a switch to send the ball back to the other player.

The LED strip [Jason] used has an SPI interface, but needed to be PWM clocked to a microcontroller to operate. After whipping up an Arduino library for his LED strip, [Jason] built an ATMega328-based controller board and a pair of seven segment display boards to keep track of the score. There’s a technical overview in another one of [Jason]’s videos.

[Jason] will be taking his 1D PONG game to the Brighton Mini Maker Faire on September 8th. We’re sure his game will be very popular there, so if you see him, tell him Hackaday sent you.

Continue reading “One dimensional PONG is a great use for LED strips”

Playing Pong with your mind

It seems [Charles Moyes] and [Mengxiang Jiang] won’t suffer from the sore wrists and thumbs from an Atari controller any longer. They built a version of Pong played by concentrating and relaxing while wearing an EEG headset.

Right now, there’s only enough hardware for one player; when the player operating the red paddle concentrates the paddle moves up – relax, it goes down.

The hardware portion of the build is fairly tricky business. [Chuck] and [Mengxiang] built a circuit to amplify the tiny voltages between their ears into something a microcontroller can read. The circuit is loosely based on this Arduino EEG build, but highly refined as the elegance of an ATMega644 requires.

The EEG amplifier has a cutoff of under 50 Hz, perfect for reading the Alpha waves correlated with concentration. The oscillations from the skull-cap are sent through the ATMega to MATLAB where after a pass through an FFT the brain waves are converted to mouse scroll wheel output.

There’s a demo video available where you can see spectators screaming at the poor test subject telling him to relax and concentrate on command. You can check that out after the break.

Continue reading “Playing Pong with your mind”

Pong, an engine, and Bond theme (oh my!)

Hopefully you’re not on a network that blocks YouTube, because we’re sharing videos that show off three different projects. Alas, they don’t give any details about the development process, but we think you’ll like seeing the end results just the same.

First up is a Stirling engine. This one is pretty serious business, with machined parts making up the alcohol-lamp powered engine [Thanks Pete]. This is much more elegant than the tuna can version from last month.

Bust out your Arduino and give theoriginal video game a go. This game of Pong is played on an oscilloscope using two micro-trimpots. To make it happen a pair of MCP4901 DAC chips are feeding the probes.

While you’ve got that friendly blue breakout board out, might as well grab a set of old foppy drives. Here is an eight-channel version of the James Bond theme [via Technabob]. Unlike the sampler from the other week, this one uses the stepper motor noise to create sweet music.

Hackaday Links: October 16, 2011

Spinning DNA animation using sprites

[James Bowman] shows a way to use sprites to simulate parts of DNA moving in 3 dimensional space. The animations are driven by an Arduino board and Maple board, which allows a comparison of the processing differences between the two. [Thanks Andrew]

Tiny Pong

This Pong game is so small (translated), you’ll be fighting over who gets a closer view of the screen.

More CNC halftone pieces

[Christian] made a bunch of halftone pictures with a CNC mill. He took the concept from [Metalfusion’s] halftone projects and ran with it. He even posted some video of the machining process (turn down your sound before viewing this one).

Most useless machine

[Jumbleview’s] take on the most useless machine makes the entire lid shut off this rocker switch, instead of using a separate arm for the task.

7400 rectifier

[Noel] is using a couple of 7400 chips in an unorthodox way to form a full-wave rectifier. They’re not powered, but instead used for the internal diodes. It’s his entry in the 7400 contest.