Axis Glove That Controls a Robot

FKXH5LGHTC696DD.LARGE

This homemade glove and gesture controlled rover was created by [electro18]. It can send temperature, battery level, and object distance to the LCD panel on the wrist. Instead of a typical joystick, this wireless system taps into an embedded accelerometer to maneuver the robot like magic.

The main chassis platform is made of clear acrylic and has additional acrylic strips fixed to the edges for additional strength. A LM35 temperature sensor is wired to the front that monitors the environments that the rover explores. An HC-SR04 Ultrasonic Rangefinder acts as the eyes of the machine. The photodiode is covered with an adaptation of a 6mm heat shrink tube to avoid false readings. Once hooked up and turned on, the robot can be controlled with the futuristic power glove consisting of two parts. An accelerometer strap and a display strap are the biggest parts. The project shows that it is relatively easy to make a system like this. Other items like quadcopters and tiny water boats could be controlled with a similar type of setup.

A video of the axis glove maneuvering the vehicle on a slope can be seen after the break:

[Read more...]

Flex Sensing for a DIY Data Glove

cyber

[Cyber] has been testing out intuitive input methods for virtual reality experiences that immerse the user further into the virtual world than archaic devices like a keyboard or mouse would allow. One of his biggest interests so far was the idea of a data glove that interacts with an Arduino Uno to interface with a PC. Since commercial products are yet to exist on a readily available level, [Cyber] decided to build his own.

He started out with a tiny inertial measurement unit called a Pololu MinIMU-9 v2 that tracks orientation of the 3-axis gyro and accelerometer. The USB interface was soldered into place connecting the wires to an Arduino Uno. From there, he hooked up a flex sensor from Spectra Symbol (which were supposedly used in the original Nintendo Power Gloves) and demoed the project by tracking the movement of one of his fingers. As the finger bent, the output printed on the serial monitor changed.

[Cyber] still needs to mount a glove on this system and construct a proper positional tracking method so that physical movement will be mirrored in a simulation.

[Cyber's] day job has had him busy these last few months, which has forced the project into a temporary hold. Recently though, [Cyber] has been an active member and an influence in the local Orange County VR scene helping to build a nice development culture, so we’re hoping to see more updates from him soon.

To view what he has done up to this point, click the link at the top of the page, and check out the video after the break:

[Read more...]

Commodore 64 Power Glove Is So Bad

bad

The Nintendo Power Glove was terrible. Really, really terrible. Thanks to modern components, though, it’s possible to recreate the Power Glove experience in a way that doesn’t suck so much. That’s what [Leif] did with his motion sensing glove for the Commodore 64.

Instead of rolling his own IMU and putting it in a glove, [Leif] is using SonicWear SoMo, a glove originally designed to generate MIDI data for performance pieces. Inside this glove is a 9 DOF gyro/accelerometer/magnetometer, uC, battery, and XBee that can be easily reprogrammed to do something a little more (or less) useful than simply sending MIDI notes and commands.

[Leif] reprogrammed the XBees to use I/O line passing instead of sending serial data, and connected the recieving XBee to the C64 joystick port through a very simple circuit with a hex inverter.

All the code to turn a SonicWear glove into a C64 controller is available on the Github, and there’s a neat demo video of [Leif] demoing his glove at the VCF Midwest late last month.

Building optical flex sensors

[Joel] dug up this hack that he pulled off over ten years ago. It’s inspired by the Nintendo PowerGlove, and uses flex sensors to react to movements of your fingers. The interesting thing is, he built these optical flex sensors himself.

He likes to say that this is a ghetto fiber-optic setup. The inlaid diagram above gives you an idea of how the sensors work. An IR LED and infrared diode are positioned at either end of a piece of clear aquarium tubing. When the tube is flexed, the amount of light that makes it to the diode is diminished, a change that can be measured by a microcontroller. [Joel] found that he could increase the resolution of the sensor by adding something to the center of the tube, blocking the light when not straight. In this case he used pieces of scrap wire. The outside of the sensor was also wrapped in shrink tubing to keep ambient light from interfering with measurements.

He uses a trimpot to tune the sensors but we wonder how hard it would be to add a calibration algorithm to the firmware?

Custom flex sensors

flex

Flex sensors, like the ones used in the Nintendo Power Glove, are generally expensive and hard to find. However, [jiovine] demonstrates that they are easy enough to make from spare parts. He sandwiched a strip of plastic from ESD bags between pieces of copper foil, and wrapped the whole thing in heat shrink tubing. The sensor is able to detect bends in either direction, unlike the original power glove sensors. His version had a nominal resistance of about 20k ohms, but by choosing a different resistive layer you could create sensors that are more or less resistive.

Related: 5-cent tilt sensor

Power Glove 20th anniversary edition

flmt0osft17yp08medium

Using an original Power Glove, a bluetooth module, an Arduino, and an accelerometer, [Biphenyl] brought the system up to date. As you can see in the video after the break, the new version is wireless and much more useful in the games. Skip to 11 minutes in if you just want to see it in action. There’s a full writeup on Instructables if you want to build your own.  We love the power glove and we can’t wait to see a more developed game for it. This beats the Power Glove Wiimote, hands down.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,048 other followers