Programmable Logic I – PLA/PAL

C64-B

Yeah I am still a little pissed that the competition is still around and we aren’t, and by “we” I mean Commodore Business Machines (CBM). It was Commodore that had the most popular home computer ever in the C64 (27 Million) and it was a team of MOS engineers after all, that had the idea to make a “micro” processor out of a 12 square inch PCB.

MOS Technologies logo and address

MOS Technology in King of Prussia/Norristown

Of course they did work at Motorola at the time and “Mot” did not want anything to do with a reduction of the profit margin on the pie-plate size processor. Of course MOS got sued by Motorola but that was an average Tuesday at MOS/CBM. I absolutely credit CBM with buying the MOS Technologies chip foundry, as together we could make our own processors, graphics chips, sound chips, memory controllers, and programmable logic.

With this arsenal at our call we didn’t have to make compromises the way other companies did such as conforming to the bus spec of an industrial standard 6845 or having to add extra logic when a custom extra pin would work. We could also make sprites.

6502 Design Team

6502 Design Team (EE Times 1975, archive.archaeology.org)

The compromise we did have to make when designing was cost, and I mean the kind of cost reduction where finding a way to save a dollar ($1USD) saved millions in the production run. I knocked $.90USD out of a transformer one day and I couldn’t focus the rest of the day due to elation.

Cost reduction is a harsh mistress however as you can’t just do it a little some of the time or only when you want to. The mental exercise of multiplying anything times a million was always there, it made it hard to buy lunch — I’d be blocking the lunch line while figuring the cost of a million tuna sandwiches FOB Tokyo [Read more...]

Reverse Engineering Programmable Logic

DickSmith_VZ300_System_s1

Despite what the cool kids are doing over on Hackaday Projects, the vast majority of vintage computers used some form of programmable logic for memory control, address decoding, and all that other stuff that can be done with just a few logic chips. It’s a great way to design a product for production, but what happens when the programmable chips go bad after 30 years?

[Clockmeister] got his hands on a Dick Smith VZ300 computer (a clone of the VTech Laser 310) with two broken 40-pin custom chips. After going through the schematics and theory of operation for this compy, he recreated the custom chips in 74 series logic.

The Dick Smith VZ300 is a fairly standard piece of equipment from 1985 – a Z80 CPU, 16k RAM, upgradable to 64k, a tape drive, and 32×16 character, 8 color display. Inside this computer are two 40-pin chips that are responsable for video buffering and VRAM control, keyboard and cassette I/O, video timing, and the monophonic speaker decoding. Both of these chips failed, and spares are unavailable, apart from scavenging them from another working unit.

After careful study, [Clockmeister] recreated the circuits inside these chip with 74 series logic chips. The new circuit was built on a board that plugs directly into the empty 40-pin sockets. Everything in this rehabbed computer works, so we’re just chalking this up as another reason why designing new retrocomputers with programmable logic is a dumb idea. Great for a product, but not for a one-off.

Image source

 

How-to: Programmable logic devices (CPLD)

cover-450

Complex programmable logic devices (CPLDs) contain the building blocks for hundreds of 7400-serries logic ICs. Complete circuits can be designed on a PC and then uploaded to a CPLD for instant implementation. A microcontroller connected to a CPLD is like a microcontroller paired with a reprogrammable circuit board and a fully stocked electronics store.

At first we weren’t sure of the wide appeal and application of CPLDs in hobbyist projects, but we’ve been convinced. A custom logic device can eliminate days of reading datasheets, finding the ideal logic IC combination, and then waiting for chips to arrive. Circuit boards are simpler with CPLDs because a single chip with programmable pin placement can replace 100s of individual logic ICs. Circuit mistakes can be corrected by uploading a new design, rather than etching and stuffing a new circuit board. CPLDs are fast, with reaction times starting at 100MHz. Despite their extreme versatility, CPLDs are a mature technology with chips starting at $1.

We’ve got a home-etchable, self programming development board to get you started. Don’t worry, this board has a serial port interface for working with the CPLD, and doesn’t require a separate (usually parallel port) JTAG programmer.

[Read more...]