Enjoy The Last Throes of Summer With a Nice Pool Automation Project

[Ken Rumer] bought a new house. It came with a troublingly complex pool system. It had solar heating. It had gas heating. Electricity was involved somehow. It had timers and gadgets. Sand could be fed into one end and clean water came out the other. There was even a spa thrown into the mix.

Needless to say, within the first few months of owning their very own chemical plant they ran into some near meltdowns. They managed to heat the pool with 250 dollars of gas in a day. They managed to drain the spa entirely into the pool, but thankfully never managed the reverse. [Ken] knew something had to change. It didn’t hurt that it seemed like a fun challenge.

The first step was to tear out as much of the old control system as could be spared. An old synchronous motor timer’s chlorine rusted guts were ripped out. The solar controler was next to be sent to its final resting place. The manual valves were all replaced with fancy new ones.

Rather than risk his fallible human state draining the pool into the downstairs toilet, he’d add a robot’s cold logical gatekeeping in order to protect house and home. It was a simple matter of involving the usual suspects. Raspberry Pi and Arduino Man collaborated on the controls. Import relay boards danced to their commands. A small suite of sensors lent their aid.

Now as the soon-to-be autumn sun sets, the pool begins to cool and the spa begins to heat automatically. The children are put to bed, tired from a fun day at the pool, and [Ken] gets to lounge in his spa; watching the distant twinkling of lights on his backyard industrial complex.

Cheap Vacuum Source For Working With Dangerous Chemicals

[Nurdrage] puts out a lot of neat videos, mostly about home chemistry. For the home chemist it is occasionally desirable to pull a vacuum. For example, a potentially dangerous chemical can be boiled and distilled at a much lower temperature than at atmospheric pressures.

However, there’s a problem with just going to the local import store and buying the first vacuum pump on the shelf.  They are primarily designed for atmospheric gasses and tend to melt when exposed to solvents. If you’re a big university or a commercial lab this is no problem. You just drop three grand on a Teflon diaphragm pump or a liquid nitrogen trap. For the home chemist who’s already having enough trouble just buying the chemicals needed for neat experiments, this is not an option.

[Nurdrage] demonstrates the proper usage of a much cheaper option: an aspirator vacuum pump. You might remember something similar from high school chemistry. School pumps generally use flowing tap water to produce the vacuum. [Nurdrage] is saving water by using a fluid pump and a reservoir to drive his aspirator.

Aspirator pumps use the Venturi effect to create a vacuum. These devices are cheap because there are no moving parts. We looked it up and the one he is using costs ten US dollars on fleabay. It can pull enough vacuum to boil water below room temperature.

The video is really good and provides a lot of useful information. It also seems like a really useful device for other hacking tasks outside of home chemistry. Video after the break.

Continue reading “Cheap Vacuum Source For Working With Dangerous Chemicals”

Paraffin Oil and Water Dot Matrix Display

In preparation for Makerfaire, [hwhardsoft] needed to throw together some demos. So they dug deep and produced this unique display.

The display uses two synchronized peristaltic pumps to push water and red paraffin through a tube that switches back over itself in a predictable fashion. As visible in the video after the break, the pumps go at it for a few minutes producing a seemingly random pattern. The pattern coalesces at the end into a short string of text. The text is unfortunately fairly hard to read, even on a contrasting background. Perhaps an application of UV dye could help?

Once the message has been displayed, the water and paraffin drop back into the holding tank as the next message is queued up. The oil and water separate just like expected and a pump at the level of each fluid feeds it back into the system.

We were deeply puzzled at what appeared to be an Arduino mounted on a DIN rail for use in industrial settings, but then discovered that this product is what [hwhardsoft] built the demo to sell. We can see some pretty cool variations on this technique for art displays.

Continue reading “Paraffin Oil and Water Dot Matrix Display”

Everyman’s Turbomolecular Pump

What can you do with a very good vacuum pump? You can build an electron microscope, x-ray tubes, particle accelerators, thin films, and it can keep your coffee warm. Of course getting your hands on a good vacuum pump involves expert-level scrounging or a lot of money, leading [DeepSOIC] and [Keegan] to a great entry for this year’s Hackaday Prize. It’s the Everyman’s Turbomolecular Pump, a pump based on one of [Nikola Tesla]’s patents. It sucks, and that’s a good thing.

The usual way of sucking the atmosphere out of electron microscopes and vacuum tubes begins with a piston or diaphragm pump. This gets most of the atmosphere out, but there’s still a little bit left. To get the pressure down even lower, an oil diffusion pump (messy, but somewhat cheap) or a turbomolecular pump (clean, awesome, and expensive) is used to suck the last few molecules of atmosphere out.

The turbomolecular pump [DeepSOIC] and [Keegan] are building use multiple spinning discs just like [Tesla]’s 1909 patent. The problem, it seems, is finding a material that can be made into a disc and can survive tens of thousand of rotations per minute. It’s a very, very difficult build, and a mistake in fabricating any of the parts will result in a spectacular rapid disassembly of this turbomolecular pump. The reward, though, would be great. A cheap turbomolecular pump would be a very useful device in any hackerspace, fab lab, or workshop garage.

The HackadayPrize2016 is Sponsored by:

Programmable Pump Keeps Its Stick On The Ice

Need to water your plants? Pump some coolant on a mill? Fill a watermelon with booze? Never fear, because the third greatest Canadian behind [Alan Thicke] and [Bryan Adams] is here with the solution to all your problems! It’s a cordless pump for desktop CNC, repair, and horticulture that automates daily chores and pumps out exact amounts of liquid.

[Chris], [AvE], Bright Idea Workshop, or, ‘that guy that records videos in his shop’ is rather well-known around these parts; we’ve seen him make an $80,000 gold-plated cutting fluid pot, a copper laminate desk, and recharge his cell phone with a car and a pencil. He’s very, very good at futzing around in his shop and the dialog is the closest YouTube will ever get to Click and Clack the Tappet Brothers, albeit without wheezing laughter.

The Kickstarter is for a rechargeable cordless pump, controlled by a microcontroller, that dispenses liquids of varying viscosity onto the item of your choice. It’s perfect for adding cooling to a drill press, watering plants, or something or everything involving beer.

Details on the pump are a little sparse, but given the liquid never touches the pump we’re putting money on some type of peristaltic pump. Add volume measurement, programmable flow rate adjustment, a timer, and dispensing programmable volumes of liquid, and you’ve got something useful.

Thanks [Scott] for the tip.

Making the Dune “Pain Box” a Reality

If you are unfamiliar with Dune, then you may not know what the pain box is. The pain box is a fictional device that produces an excruciating burning sensation without causing any actual damage. [Bryan] has been working on a project to duplicate this effect in the real world. It sounds like he may be on the right path by using the “thermal grill illusion”.

The thermal grill illusion is a sensory trick originally demonstrated back in 1896. The trick is made up of two interlaced grills. One is cool to the touch, and the other is warm. If the user touches a single grill, they won’t experience any pain because neither temperature is very extreme. However if the user places their hand over the interlaced grills simultaneously they will immediately experience a burning heat. This usually causes the person to pull their hand away immediately. It’s a fun trick and you can sometimes see examples of it at science museums.

The thermal grill illusion sounded like the perfect way to make the pain box a reality. [Bryan] has set specific constraints on this build to make it more true to the Dune series. He wants to ensure the entire package fits into a small box, just big enough to place an adult hand inside. He also wants to keep safety in mind, since it has the potential to actually cause harm if it were to overheat.

[Bryan] has so far tried two methods with varying success. The first attempt involved using several thermoelectric coolers (TECs). [Bryan] had seen PCBs etched a certain way allowing them to radiate heat. We’ve seen this before in 3D printer surfaces. He figured if they could become hot, then why couldn’t they become cold too? His idea was very simple. He etched a PCB that had just two large copper pours. Each one branched out into “fingers” making up the grill.

Each side of the grill ultimately lead to a flat surface to which a TEC was mounted. One side was cold and the other was hot. Heat sinks we attached to the open side of the TECs to help with performance. Unfortunately this design didn’t work. The temperature was not conducted down to the fingers at all. The back side of the PCB did get hot and cold directly under the TECs, but that wouldn’t work for this illusion.

The latest version of the project scraps the PCB idea and uses small diameter copper tubing for the grill. [Bryan] is working with two closed loop water systems. One is for warm water and the other is for cold. He’s using an aquarium pump to circulate the water and the TECs to actually heat or cool the water. The idea is that the water will change the temperature of the copper tubing as it flows through.

While the results so far are better than the previous revision, unfortunately this version is having problems of its own. The hot water eventually gets too hot, and it takes over an hour for it to heat up in the first place. On top of that, the cold water never quite gets cold enough. Despite these problems, [Bryan] is hopefully he can get this concept working. He has several ideas for improvements listed on his blog. Maybe some Hackaday readers can come up with some clever solutions to help this project come to fruition.

Peristaltic Pump Moves Fluids Uphill Both Ways

Here’s a skill we should all probably have for after the apocalypse—the ability to build a cheap peristaltic pump that can transport highly viscous fluids, chunky fluids, or just plain water from point A to point B with no priming necessary. That’s exactly what [Jack Ruby] has done with some fairly common items.

He started with a springform cake pan from a thrift store, the kind where the bottom drops out like that centripetal force ride at the carnival. He’s using 2″ casters from Harbor Freight mounted to a block of wood. The casters go round and squeeze fluid through the hose, which is a nice length of heat-resistant silicone from a local homebrew shop. He’s currently using a drill to run the pump, but intends to attach a motor in the future.

[Jack]’s write-up is very thorough and amusing. Stick around to see the pump in action as well as a complete tour. You can also pump colored goo if you’re out of beer materials.

Continue reading “Peristaltic Pump Moves Fluids Uphill Both Ways”