Wireless Water Level Sensor from PVC Pipe

[Bob] was having trouble keeping up with his water troughs. He had to constantly check them to make sure they weren’t empty, and he always found that the water level was lower than he thought. He decided it was time to build his own solution to this problem. What he ended up with was a water level sensor made from PVC pipe and a few other components.

The physical assembly is pretty simple. The whole structure is made from 1/2″ PVC pipe and fittings and is broken into four nearly identical sensor modules. The sensors have an electrode on either side. The electrodes are made from PVC end caps, sanded down flat at the tip. A hole is then drilled through the cap to accommodate a small machine screw. The screw threads are coated in joint compound before the screw is driven into the hole, creating its own threads. These caps are placed onto small sections of PVC pipe, which in turn connect to a four-way PVC cross connector. 

On the inside of the electrode cap, two washers are placed onto the screw. A stranded wire is placed between the washers and then clamped in place with a nut. All of the modules are connected together with a few inches of pipe. [Bob] measured this out so it would fit appropriately into his trough, but the measurements can easily be altered to fit just about any size container. The wires all route up through the pipe. The PVC pipe is cemented together to keep the water out. The joint compound prevents any leaks at the electrodes.

A piece of CAT 5 cable connects the electrodes to the electronics inside of the waterproof controller box. The electronics are simple. It’s just a simple piece of perfboard with an XBee and a few transistors. The XBee can detect the water level by testing for a closed circuit between the two electrodes of any sensor module. The water acts as a sort of switch that closes the circuit. When the water gets too low, the circuit opens and [Bob] knows that the water level has lowered. The XBee is connected to a directional 2.4GHz antenna to ensure the signal reaches the laptop several acres away. Continue reading “Wireless Water Level Sensor from PVC Pipe”

Building Things with Lean Pipe

Sometimes you just want to build something quickly and easily. Maybe you just need a basic structure for your actual project, or perhaps you want to be able to easily modify the design. Maybe you don’t have access to many fancy tools to build a solid, lightweight structure. Another possibility is that you want to be able to break down your structure and move it at a later date. In cases like these, you might want to consider using lean pipe.

Lean pipe is kind of like K’NEX for adults. It’s made up of metal pipe and specialized fittings. If you’ve ever worked with PVC pipe before then this may sound familiar. The difference is lean pipe is stronger and designed specifically for building sturdy structures. The fixtures designed for use with lean pipe are much easier to work with than PVC pipe. With PVC pipe, it seems like you never have the exact right fitting and you have to build your own adapters, quickly increasing the cost of the design.

A typical lean pipe fitting will either slide over the end of a section of pipe, or wrap around it somewhere in the middle. An adjustment screw can then be tightened to clamp the fitting in place around the sections of pipe. The video below does a good job demonstrating the different possibilities with fittings. The primary issue with this material is that you might not be able to find it at your local hardware store. Luckily, a quick Internet search will turn up a number of online purchasing options.

So what can you build with this stuff? Cody has been building himself computer desks with an industrial look. He first starts out with the frame design. This is the part that’s made from the lean pipe. Once the frame is completed he just needs to work on the wood surfaces. All he really needs to do is cut the wood to shape and then finish it to look nice. It then lays in place and can be bolted down for extra security. Continue reading “Building Things with Lean Pipe”

Transformer Inductive Coupling Simulation is SFW

[James] has a friend who teaches at the local community college. When this friend asked him to build a transformer coupling simulation, he was more than happy to oblige. Fortunately for us, he also made a video that explains what is happening while  showing the output on a ‘scope.

For the simulation, [James] built primary and secondary coils using PVC pipe. The primary coil consists of 11 turns of 14AWG stranded wire with 4V running through it applied. The first secondary he demonstrates is similarly built, but has 13 turns. As you’ll see, the first coil induces ~1.5V in the second coil. [James] first couples it with the two windings going the same way, which results in the two 2Mhz waveforms being in phase with each other. When he inserts the secondary the other way, its waveform is out of phase with the primary’s.

His second secondary has the same diameter PVC core, but was wound with ~60 turns of much thinner wire—28AWG bell wire to be exact. This match-up induces 10V on the secondary coil from the 4V he put on the primary. [James]’ demonstration includes a brief Lissajous pattern near the end. If you don’t know enough about those, here’s a good demonstration of the basics coupled with an explanation of the mechanics behind them.

Continue reading “Transformer Inductive Coupling Simulation is SFW”

Homemade Bazooka Has Earned Its Stripes

Many of us dream of launching rockets from our shoulders, but [John] here actually did something about it.

This bazooka build started with a 6″ diameter PVC pipe. He mounted a length of 80/20 T-slotted aluminum extrusion to the pipe through a couple of wood blocks. [John] installed rail buttons on some Estes Alpha rockets which slide along nicely inside the T-slot. He welded a PVC cleanout fitting and plug to one end for easy access and gave her a nice paint job.

The ignition is simple: an irresistible red push button is wired to a 9V battery and a pair of alligator clips. [John] loads up a rocket, puts the gators on the wires of an igniter, pushes said button, and Bob’s your uncle. All he needs now is a pair of gun boats. Video of the build and some demonstrations we don’t necessarily recommend are after the jump.

Continue reading “Homemade Bazooka Has Earned Its Stripes”

Backyard Roller Coaster – Family, Physics and Fun

Coaster Dad Track Segment

This week we have been in touch with [Will Pemble], Geek Dad. After a visit to Magic Mountain in early 2013, his son [Lyle] asked “Why don’t we build our own rollercoaster, Dad?”. [Will] couldn’t think of a single reason why not. This was the start of the CoasterDad Project. Excited by the challenge of building a Backyard Roller Coaster, [Will] also thought it would be a fantastic opportunity to teach [Lyle] about physics. Family, Fun, and Physics – what could be better?

The track is made from parallel PVC pipes on a lumber frame, similar to the one we saw for the Manpowered PVC rollercoaster, but it is more varied and looks a lot sturdier. [Will] is now working on mark II of the cart made from a steel frame with skateboard wheels and has independent axles. He is planning to add a pedal mechanism with freewheel, so you can get a little extra oomph on the rises.

In [Will’s] great videos you can get a front row seat on the coaster and see that even though it is fairly compact it has enough rises, troughs and turns to keep you entertained. It may not be quite as exciting as [Jon Iver’s] homemade rollercoaster, but when finished, the rider will be able go round and round self-propelled to their heart’s content, or till they puke, whichever comes first.  [Will] also explains the theory and practicalities behind making a strong, safe, but really fun coaster. Don’t miss the videos after the fold.

Have you made a backyard roller coaster, or are thinking about building one? Have you got any questions about [Will’s] roller coaster build? He’s up for making a video to answer some of them, so please leave questions for him in the comments below. We will post the video later on.

Continue reading “Backyard Roller Coaster – Family, Physics and Fun”

Fixing Misaligned PVC With Kerf Bends

misalignment-coupler

Our old pal [Jeremy Cook] is doing his own remix of [Theo Jansen]’s Strandbeest, and like the original, he’s using PVC pipe. Unlike the originals, he’s powering it with motors, not wind, and this has caused a few problems in transmitting mechanical power through a piece of PVC. Nothing is perfect, and in a few points in the legs movement the shaft shakes violently. One motor was lost and another nearly so before [Jeremy] came up with a flex coupler made from PVC.

The technique [Jeremy] is using has seen a lot of use with people building laser cut enclosures. It’s called kerf bending, and it works simply by cutting a few slits in a panel that allow it to bend slightly. This technique was replicated by [Jeremy] on a miter saw, cutting eight slots halfway through a one inch PVC pipe, with each successive cut offset 90 degrees.

The new design works well for transmitting power, and he’s not ruining motors any more. Check out the video below.

Continue reading “Fixing Misaligned PVC With Kerf Bends”

A sublime PVC cannon

PVC

Not to be outdone with hair spray powered PVC cannons, [William] created an even cooler device: a cannon powered by dry ice.

Once dry ice is loaded into the pressure vessel, a burst disk is placed in the breech and the barrel is screwed on. The trigger isn’t very precise – the entire gun is powered by dry ice turning from a solid into a gas – but the resulting cloudy booms more than make up for any imperfections.

Despite building a cannon and using PVC as a pressure vessel, [Bill]’s project is actually quite safe. The ‘trigger’ is a burst valve made out of a disc of aluminum foil held between two sections of PVC. When the pressure rises, the aluminum foil inevitably tears, shooting whatever is in the barrel out and hopefully not into an eye. The ‘safety’ on the gun is a ball valve connected directly to the pressure vessel, and with a pressure gauge and a release valve. We’re more than confident in saying this is pretty darn safe as far as PVC cannons are concerned.