Soft-legged Robot Handles Rough Terrain with Ease

Whether it’s wheels, tracks, feet, or even a roly-poly body like BB-8, most robots have to deal with an essential problem: dirt and grit can get into the moving bits and cause problems. Some researchers from UCSD have come up with a clever way around this: pneumatically actuated soft-legged robots that adapt to rough terrain.

At a top speed of 20 mm per second, [Michael Tolley]’s squishy little robot won’t set any land speed records. But for applications like search and rescue or placing sensors in inhospitable or inaccessible locations, slow and steady might just win the race. The quadrupedal robot’s running gear can be completely 3D-printed on any commercial printer capable of using a soft filament. The legs each contain three parallel air chambers within a bellowed outer skin; alternating how the chambers are inflated controls how they move. The soft legs adapt to unstructured terrain and are completely sealed, eliminating intrusion problems. The video below shows how the bot gets around just fine over rocks and sand.

The legs remind us a little of our [Joshua Vazquez]’s tentacle mechanism, but with fewer parts. Right now, the soft robot is tethered to its air supply, but the team is working on a miniaturized pump to make the whole thing mobile. At which point we bet it’ll even be able to swim.

Continue reading “Soft-legged Robot Handles Rough Terrain with Ease”

Quadruped Robot Can Crawl Under Cars and Jump-Kick-Open Doors

The wheel is a revolutionary invention — as they say — but going back to basics sometimes opens new pathways. Robots that traverse terrain on legs are on the rise, most notably the Boston Dynamics Big Dog series of robots — and [Ghost Robotics]’ Minitaur quadruped aims to keep pace.

One of [Ghost Robotics] founders, [Gavin Knneally] states that co-ordination is one of the main problems to overcome when developing quadruped robots; being designed to clamber across especially harsh terrain, Minitaur’s staccato steps carry it up steep hills, stairs, across ice, and more. Its legs also allow it to adjust its height — the video shows it trot up to a car, hunker down, then begin to waddle underneath with ease.

Continue reading “Quadruped Robot Can Crawl Under Cars and Jump-Kick-Open Doors”

I am Science Fiction Incarnate; I am Handle

This is the first official look at Boston Dynamics’ new robot design, called Handle, and it’s a doozy. They are a trusted source of cutting-edge real-world robotics, which is good. If this came from an unknown source we’d be scrambling to debunk it as fake. This robot shows incredible utility, the likes of which has been relegated to the computer graphics of the movie and video game industries.

Impressive ability to keep 'hands' stationary in 3D space
Impressive ability to keep ‘hands’ stationary in 3D space

At the beginning of the month, we saw a demonstration of the robot but it was simply cellphone footage of a conference hall video. This is a crystal clear 60fps video from Boston Dynamics themselves with a few juicy details to go along with it. Chief among them (for us anyway) is that this prototype has a battery range of about 15 miles between charges. The efficiency is due in large part to the wheeled nature of the beast. It balances on two wheels, but the design attaches those wheels to two fully articulated legs rather than directly to the frame of the body.

The result is a quadruped that is distinctly not human in appearance but can perform well in similar environments and with similar tasks. Handle is capable of offsetting its body weight, allowing the front limbs to pick up heavy objects while maintaining balance. The combination of both electric and hydraulic actuators let it perform feats like jumping over four-foot high objects. The independence of each wheel is shown off with ramps to simulate uneven terrain.

Bravo BD. We can’t wait to see Handle wheeling down the street placing smile-adorned boxes on each stoop as it revolutionizes home delivery. Oh, and kudos on the 80’s-style freeze frame at the end of the video below.

Continue reading “I am Science Fiction Incarnate; I am Handle”

Hacklet 109 – Complex 3D Printed Projects

If you can’t tell, we’re on a roll with 3D printers and printed projects this month. So far, we’ve covered printers, and simple functional 3D prints. This week we’re taking a look at some of the awesome complex 3D printed projects on

Complex 3D printed projects are things like robots, quadcopters, satellite tracking systems, and more. So let’s jump in and look at some of the best complex 3D printed projects on!

dtto2We start with [Alberto] and Dtto v1.0 Modular Robot. Dtto is [Alberto’s] entry in the 2016 Hackaday Prize. Inspired by Bruce Lee’s famous water quote, Dtto is a modular snake-like robot. Each section of Dtto is a double hinged joint. When two sections come together, magnets help them align. A servo controlled latch solidly docks the sections, which then work in unison. Dtto can connect and separate segments autonomously – no human required. [Alberto] sees applications for a robot like [Dtto] in search and rescue and space operations. Continue reading “Hacklet 109 – Complex 3D Printed Projects”

Adorable Quadruped Robot Hops and Walks

The ESP8266 is finding its way into all sorts of projects these days. It’s a capable little device, to be sure, but we’d have to say that finding it running a quadruped robot that can hop and run was a little unexpected. And to have it show up in such an adorable design was pretty cool too.

From the looks of [Javier Isabel]’s build log, he put a lot of thought into [Kame]. All the body parts and linkages are 3D printed from PLA, with the nice touch of adding a contrasting color. The legs are powered by eight high-speed Turnigy servos, and good quality bearings are used in the linkages. A NodeMCU runs the show with custom oscillator algorithms that control the various gaits, including the hopping motion. The BOM even lists “Adhesive 12mm diameter eyes” – perhaps that’s some sort of slang for the more technically correct “googly eyes.”

Built primarily as a test platform for studying different gaits, there doesn’t seem to be much in the way of sensors in [Kame]’s current incarnation. But with an ESP8266 under the hood, the possibilities for autonomous operation are good. We look forward to seeing where this project goes next. And we kid about the cuteness factor, but never doubt the power of an attractive design to get the creative juices flowing.

We’ve covered a lot of quadruped robots before, and a lot of them seem to trend toward the cute end of the spectrum. Check out this baby-quad that’s learning to walk or this quad that thinks it’s a puppy.

Continue reading “Adorable Quadruped Robot Hops and Walks”

Spherical Robot Rolls then Walks into Action

Droideka [Source: Wookieepedia]
If ever any sci-fi robot form-factor made more sense than the Droideka of the Star Wars franchise, we’re not sure what it could be. Able to transform from a spheroid that rolls quickly onto the battlefield into a blaster-bristling tripodal walker, the Hollywood battle droid showed a lot of imagination and resulted in a remarkably feasible design. And now that basic design is demonstrated in a spherical quadrupedal robot that can transform from rolling to walking.

Intended as a proof of concept of a hybrid rolling-walking locomotion system, the QRoSS robot from Japan’s Chiba Institute of Technology is capable of some pretty amazing things already. Surrounded by a wire roll cage that’s independent of the robot’s legs, QRoSS is able to roll into position, unfurl its legs, and walk where it needs to go. Four independent legs make it sure-footed over rough terrain, with obvious applications in such fields as urban search and rescue; a hardened version could be tossed into a collapsed building or other dangerous environment and walk around to provide intelligence or render aid. The robot’s self-righting feature would be especially handy for that use case, and as you can see in the video below, it has a powered rolling mode that’s six times faster than its walking speed.

For a similar spherical transforming robot, be sure to check out the MorpHex robot with its hexapod design.

Continue reading “Spherical Robot Rolls then Walks into Action”

Hackaday Prize Entry: Solving The Shortage Of Walking Robots

The world has a severe lack of robots, and the shortage of walking robots is untenable. We were promised flying cars and fusion reactors, yet here we are, 15 years into the twenty-first century without even a robotic pet spider.

[Radomir]’s entry for The Hackaday Prize aims to fix this bizarre oversight of scientific and technological progress. He’s designed a small, inexpensive, but very well designed quadrupod robot that will put full reverse kinematics on your desk for under $50.

To solve humanity’s glaring lack of walking robots, [Radomir] designed Tote, a four-legged robot whose chassis is mostly composed of only 9 gram servos. There are twelve servos in total, three on each of its four legs. It’s an extension of his earlier µKubik robot. While the µKubik was powered by Python, the Tote is all Arduinofied, calculating the trajectories of each leg dozens of times a second with an Arduino Pro Mini.

This isn’t the only walking robot kit on; last year, [The Big One] created Stubby the Teaching Hexapod. Even though Stubby featured six legs, it’s still remarkably similar to Tote; 9 gram servos provide all the locomotion, and all the software is running on a relatively small ATMega microcontroller. Both are great introductions to walking robots, and both bots will surely be capable and just rulers of mankind after the robot apocalypse.

The 2015 Hackaday Prize is sponsored by: