Electromagnetic Spiderman Webshooter Railgun / Grappling Hook

spiderman grapple hook rail gun

As technology continues to advance, make-believe props and technology from movies are coming closer and closer to reality. [Patrick Priebe] has managed to put together a working Spiderman Webshooter with the help of electromagnets!

He’s built a tiny coil gun that puts out 100 Joules of energy using a 350V capacitor bank, which straps cleanly to his wrist over top of a Spiderman costume glove. It makes the classic high-pitched hum as it charges, and launches a small barbed brass arrow capable of skewering Styrofoam.

He didn’t stop there though! He’s created a handy little winch using a small high-powered brushless motor with an ESC. A weighted disk acts as a flywheel to increase the pulling power of the fishing line, and he’s built it on a pivot so when you launch it, the fishing line just slips off the end without resistance. To engage, you flip it back perpendicular to the line and turn on the motor.

Continue reading “Electromagnetic Spiderman Webshooter Railgun / Grappling Hook”

Building a Rail Gun

[Valentin] tipped us about his latest project: a homemade railgun. For the few that may not know already, a railgun is an electrically powered electromagnetic projectile launcher. It is comprised of a pair of parallel conducting rails, along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail. [Valentin]’s writeup starts with a detailed explanation of this principle, then a simple proof of concept is shown where a metal stick with two small round magnets on each end is accelerated along two alumium strips powered by a 9V battery.

The final build shown above is powered by a capacitor bank consisting of three 400V 2200uF capacitors in parallel. [Valentin] opted for a hot rail design, where the power is always present on the rails. The projectile is inserted into the assembly by a spring-loaded lever. A video is embedded after the break. If you found this interesting, you’re going to love the fully-automatic Gauss gun.

Continue reading “Building a Rail Gun”

My what a large capacitor bank you have

[Daniel Eindhoven] put together this 11,344 Joule capacitor bank that he says would be perfect for weapons such as a rail gun, coil gun, or electrothermal-chemical gun. He machined a couple of aluminum plates to act as a positive and negative bus. The two are separated by a denuded sheet of PCB (making us wonder how he got the copper to peel off like that). Once charged there’s the little problem of how to discharge the system without getting bit, which [Daniel] solved by building a pneumatic switch. We didn’t find the test-fire footage very interesting but we did embed the demonstration of his switch after the break.

Continue reading “My what a large capacitor bank you have”

Making a rail gun (again!)

[Rp181] is at it again with version 2 of his rail gun project. The original did have some power with 18 400V 3900uf capacitors, but he’s ramped it up to now using 40! Reaching more than double the amount of joules of energy, 12kJ vs. the 5.6kJ! Some other changes include a new injector solenoid setup and revision 3 of his breakwire chronograph. Sadly, he doesn’t mention if this is as green as his first rail gun. Check out a video of just the injector firing and an animation explaining some new updates after the jump.

Continue reading “Making a rail gun (again!)”

Making a rail gun

rail

[Rp181] has documented his entire rail gun build. He takes us through collecting the materials and assembling the system. It required 18 400V 3900uf capacitors to get the 5600 joules he wanted. It looks pretty impressive, though a video of it wreaking havoc on something might have been nice. We’ve seen rail guns before, from tiny ones for a robosapien to larger projects very similar to this one. In his instructable, he touts this as a “green” system. The capacitors are aluminum and no gun powder is required to move the projectile. Anyone want to do the math to figure out if it really is any better? Maybe if he’s collecting his energy via a giant solar panel.

[via instructables]