# Shift Register Powered Realistic Candle Flicker

[Kevin Darrah] recently went out to dinner at a restaurant that was using some cheap LED candles (yuck) instead of the real thing. And in the true spirit of a hacker, he started to notice the patterns programmed into the fake flame repeat over and over again. And like any hacker might, his mind started to devise a better way.

Now’s the time where some of us lazy hackers might grab a microcontroller, and copy and paste in some pseudo-random number generating code you found on the Internet, but not [Kevin]. The basics of his hack uses two shift registers tied together that are fed a single clock signal, and also a latch signal that is slightly delayed version of the same signal made by a RC-time circuit.

The randomness of the output is created is by feeding back the outputs of the shift registers to an XOR gate. If you want to learn more about this, the technique it’s called a “linear feedback shift register“. It’s commonly used as a poor-man’s random number generator, although it’s not technically truly random, statistically it does a very good job. You can see the results in the video after the break where [Kevin] describes the circuit.  He wraps up the hack with a battery and solar charging circuit as well to make a completed project.

# The Most Random Electronic Dice Yet

If you’ve written a great library to generate random numbers with a microcontroller, what’s the first thing you would do? Build an electronic pair of dice, of course.

[Walter] created the entropy library for AVRs for a reliable source of true random numbers. It works by using the watchdog timer’s natural jitter; not fast by any means but most sources of entropy aren’t that fast anyway. By sampling a whole lot of AVR chips and doing a few statistical tests, it turns out this library is actually a pretty good source of randomness, at least as good as a pair of dice.

The circuit itself uses two 8×8 LED matrices from Adafruit, an Arduino, and a pair of buttons. The supported modes are 2d6, 2d4, 2d8, 2d10, 1d12, 1d20, a deck of cards, a single hex number, a single 8-bit binary number, or an eight character alphanumeric password. It’s more than enough for D&D or when you really need an unguessable password. Video demo below.

# We’ll take the fries.

We’ve all been there; hardest decision we’ve ever had to make. College and debt or freedom but no career? Start a family or live out alone? The number 2 with a small shake or side of fries?!

[Leon] sent in his random number generator, oddly enough not to just generate a number, but help us through with those life altering decisions. Using a noise diode like setup he’s able to generate random bits, which an ATtiny24 then converts and displays on a 7 segment LED. His generator also has the ability to set upper and lower limits. Seems like an awful lot of work to avoid the freedom of choice paradox, but we enjoyed the project none the less. Check out a video after the break. Continue reading “We’ll take the fries.”