Phenolic board from an RC car - a well-known sight for a hacker

Pairing A New Remote To A Cheap RC Car

The cheap little RC cars are abundant anywhere you are, and if you’ve ever disassembled one, you are familiar with how the PCB looks. A single-sided phenolic paper PCB with a mystery chip driving a bunch of through-hole transistors, a sprinkle of through-hole capacitors, and a few supporting components for the wire antenna. It might not feel reusable, but [Chris Jones] begs to differ, with a Twitter thread showing us how he’s paired a scrap board from one RC car with a remote control from another, all to help a little family project.

These mystery ICs turn out to be RC-car-on-a-chip modules, and Chris lucked out in that his IC has a detailed datasheet available, complete with code pulse examples for different commands. The datasheet for the chip in the remote control is nowhere to be found, though, so we have to dig deeper. How about scoping the RF output? Turns out the supported codes between the two ICs are basically identical! The scrap board wouldn’t move any motors though, so it was time to narrow down the issue.

The RC car board has a 128KHz oscillator, and scoping that has shown the issue – it was producing 217KHz for some reason. It turned out that the oscillator’s load resistor was 100 kiloohms instead of recommended 200k, and switching that put it back on course. We would assume that, wherever the original remote control for that car is, it is similarly mis-tuned, or otherwise the RC car could never have worked.

Through sheer luck and tactical application of an oscilloscope, the RC car moves again, paired to a remote it was never meant to be, and the family project moves forward. Got a RC car, but no remote? Perhaps a HackRF can help.

3D Printed RC Car Is Geared For Speed

You can always go out and buy an RC car off the shelf. However, it’s readily achievable to print your own design that has many of the features of off-the-shelf models, as demonstrated by [Jinan].

[Jinan] set about creating a rear-wheel-drive design with a low center of gravity for good handling. Two large 5.2 Ah batteries slung low in the chassis help keep the car planted when cornering. [Jinan] also developed a double-wishbone suspension setup up front to handle bumps with ease.

With his eyes on top speed, [Jinan] needed a drivetrain that could handle sustained high RPM operation without failure. During the development process, [Jinan] spent plenty of time learning about the mathematics behind gear shapes before relying on a built-in CAD generator to do the job for him. Armed with proper gearing, he focused on making sure the driveshafts and other links wouldn’t fail at speed.

[Jinan] doesn’t shy away from diving into the engineering of his design, analyzing failures and improving on his designs along the way. It’s no surprise his design was able to reach 66 km/h (41 MPH) after his rigorous development process.  It’s compelling watching, and a great way to learn something.

Continue reading “3D Printed RC Car Is Geared For Speed”

3D Printing RC Car Tires To Go Fast

There’s a bit of a high-speed arms race in the RC world on YouTube these days. [Michael Rectin] is in on the action, and he’s been exploring how to 3D print a decent set of tires to help his RC car reach higher speeds mph.

His first efforts involved experiments with TPU. The tires looked okay, but had very little traction. He later moved on to VarioShore TPU, a filament capable of delivering various properties depending on the printing method. Printing for the softest, and thus grippiest, possible tires, [Michael] whipped up some sporty looking boots for his wheels.

His tires improved over  off-road RC tires in one major way. His design didn’t suffer significant ballooning as the rotational velocity increased. However, the VarioShore material lacked grip compared to off-the-shelf rubber RC tires designed for high-speed use. The commercially-available tires also offered a smoother ride.

[Michael] also demonstrated some neat tricks for high-speed RC driving. He used a modified flight controller to correct the car’s steering in response to perturbations, and put in a scaling method that reduces steering inputs at higher speed. That didn’t entirely stop the carnage though, with some incidents seeing wheels thrown off in big tumbling crashes.

Electric-powered RC cars can go darn quick these days, but you might want to consider jet power if you want to break records. Video after the break.

Continue reading “3D Printing RC Car Tires To Go Fast”

A Nifty 3D Printed RC Car

Once upon a time, a remote controlled (RC) car was something you’d buy at Radio Shack or your local hobby store. These days, you can print your own, complete with suspension, right at home, as this project from [Logan57] demonstrates.

The design uses standard off-the-shelf hobby-grade components, with a brushed motor and controller for propulsion, and small metal gear servo for steering. The latter is a smart choice given there’s no servo saver in the design. Save for the fasteners and bearings, all the other parts are 3D printed. The hard components are produced in PETG or PLA, while flexible TPU is used for both the tires and the spring elements in the suspension system. It’s a double-wishbone design, and should serve as a good education should you later find yourself working on a Mazda Miata.

Building your own RC car isn’t just fun, it opens up a whole realm of possibilities. Sick of boring monster trucks and race cars? Why not build a 10×10 wheeler or some kind of wacky amphibious design? When you do, we’ll be waiting by the tipsline to hear all about it. Video after the break.

Continue reading “A Nifty 3D Printed RC Car”

Breaking Land Speed Records With An RC Car

Building and running a land speed record car is an expensive business that requires incredibly wealthy benefactors. Doing it on a smaller scale with a radio control car is still pricy, but more within the reach of the individual. [ProjectAir] has been working on just that, and recently set out to break records with a car of his own design.

The car runs a Jetcat 220 engine capable of delivering 220 newtons of thrust, built into a custom aluminium chassis with streamlined bodywork. Early runs saw it reach 112 km/h, but the goal was to push it beyond 150 km/h to break the standing Guinness World Record.

With an RC event running on a local runway, [ProjectAir] had the venue and opportunity to make an attempt. It was tough going, with the car throwing off its nosecose in one run, while rough weather brought further struggles. Strong crosswinds played a role in a violent crash on the car’s fastest pass, which ripped the car apart and destroyed the engine. However, in the end, it had done enough to secure a record at over 152 km/h, even if its later faster efforts didn’t officially count.

It’s clear that the car has come a long way since [ProjectAir’s] initial efforts in 2022, and we can’t wait to see where the project goes next. Video after the break.

Continue reading “Breaking Land Speed Records With An RC Car”

Tiny RC Truck And Trailer Motors Around Tabletop

Most RC cars replicate real-world race cars or fantastical off-road buggies for outdoor escapades. [diorama111] is an expert at building tiny desk-roaming models, though, and built this exquisite micro semi-truck and trailer.

Based on a 1/150 scale truck and trailer model, the build starts with the tractor unit. It’s disassembled, and its plastic wheels are machined on a tiny lathe so they can be fitted with grippy rubber tires carved out of O-ring material. The front wheels are given hubs and mounted to a motor-driven screw-type steering assembly. A photodetector is used to aid in self-centering. The rear axle is fitted with a geared drivetrain, running off a small DC motor. Multiple gear stages are used to give the build plenty of torque for pulling the trailer. Remote control of the model is achieved over Bluetooth, with an ATtiny3217 tucked inside with motor drivers to run the show.

The microcontroller also runs a full set of driving, tail, and indicator lights. The trailer is fitted with an infrared receiver and a battery of its own. It receives signals from an infrared LED on the tractor unit, which tell the trailer when to turn on the taillights and indicators.

There aren’t too many modelers working in the RC space at the 1:150 scale. [diorama111] has form here, though, and we’ve featured a previous Toyota Crown build before.

Continue reading “Tiny RC Truck And Trailer Motors Around Tabletop”

Amphibious Dragster Drives On Water

Dragsters are typically about peak performance on a tarmac drag strip. [Engineering After Hours] took a different tack, though, building a radio-controlled amphibious dragster intended to cross small bodies of water.

The build is based on a Traxxas Raptor RC car. However, it’s been heavily reworked from a pickup-like design to become a dragster with a motor mounted in the rear. It’s also been fitted with a foam underbody to allow it to float when stationary. The rear tires have been replaced with 3D-printed versions with large paddles, which provide propulsion in the water.

Initial tests showed the car struggled to make progress in the water, as the paddle tires tended to drag the rear end deeper under water. The tiny dragster tires up front didn’t help it steer, in water either. Large foam discs were added to the front tires to enable them to act as better rudders.

Fitted with its water tires and foam floatation aids, the car can only drive slowly on land, but [Engineering After Hours] points out this is enough to call it amphibious. It does a better job at skittering around on water, and it was able to cross a local pond at low speed.

We’ve seen some other creative techniques for making amphibious vehicles, like these crazy star-shaped wheels. Video after the break.

Continue reading “Amphibious Dragster Drives On Water”