Sensing a Magnet with Local Sourcing

I had a small project going on–never mind exactly what–and I needed to detect a magnet. Normally, that wouldn’t be a big problem. I have a huge hoard of components and gear to the point that it is a running joke among my friends that we can be talking about building something and I will have all the parts we need. However, lately a lot of my stuff is in… let’s say storage (again, never mind exactly why) and I didn’t have anything handy that would do the job.


If I had time, there are plenty of options for detecting a magnet. Even if you ignore exotic things like SQUID (superconducting quantum interference device) there’s plenty of ways to detect a magnet. One of the oldest and the simplest is to use a reed switch. This is just a switch made with a thin piece of ferrous material. When a magnet is nearby, the thin piece of metal moves and makes or breaks the contact.

These used to be common in alarm systems to detect an open or closed door. However, a trip to Radio Shack revealed that they no longer carry things like that as–apparently–it cuts into floorspace for the cell phones.

I started to think about robbing a sensor from an old computer fan or some other consumer item with a magnetic sensor onboard. I also thought about making some graphene and rolling my own Hall effect sensor, but decided that was too much work.


I was about to give up on Radio Shack, but decided to skim through the two cabinets of parts they still carry just to get an idea of what I could and could not expect to find in the future. Then something caught my eye. They still carry a wide selection of relays. (Well, perhaps wide is too kind of a word, but they had a fair number.) It hit me that a relay is a magnetic device, it just generates its own electromagnetic field to open and close the contacts.

I picked up a small 5 V reed relay. They don’t show it online, but they do have several similar ones, so you can probably pick up something comparable at your local location. I didn’t want to get a very large relay because I figured it would take more external magnetic field to operate the contacts. You have to wonder why they have so many relays, unless they just bought a lot and are still selling out of some warehouse. Not that relays don’t have their use, but there’s plenty of better alternatives for almost any application you can think of.

Continue reading “Sensing a Magnet with Local Sourcing”

Avoiding Exercise with an ESP8266 and Blynk

[Mike Diamond] was tired of climbing down (and back up) 40 stairs to check his mailbox. He decided to create a mailbox alert using the ESP8266 to connect to his WiFi. The idea was simple: have the ESP8266 monitor when the mailbox flap opened using a magnet and a reed switch. As always, though, the devil is in the details. [Mike] got things working with a little help and shares not only the finished design but how he got there.

To handle the sending of e-mail, [Mike] used the Blynk app. You often think of Blynk as a way to build user interfaces on an Android or iOS device that can control an Arduino. In this case, though, [Mike] used the library with the ESP8266 and had it send e-mail on his behalf.

Continue reading “Avoiding Exercise with an ESP8266 and Blynk”

Leg Mounted Beer Bottles for Underwater Propulsion

Sitting on the beach, finishing off a beer one day, [Rulof] realized that if he put a motor in the beer bottle with a propeller at the bottle’s mouth, he could attach the result to his leg and use it to propel himself through the water. Even without the added bonus of the beautiful Mediterranean waters through which he propels himself, this is one hack we all wish we’d thought of.

These particular beer bottles were aluminum, making cutting them open to put the motor inside easy to do using his angle grinder. And [Rulof] made good use of that grinder because not only did he use it to round out parts of the motor mounting bracket and to cut a piston housing, he also used the grinder to cut up some old sneakers on which he mounted the bottles.

You might wonder where the pistons come into play. He didn’t actually use the whole pistons but just a part of their housing and the shaft that extends out of them. That’s because where the shaft emerges from the housing has a water tight seal. And as you can see from the video below, the seal works well in the shallow waters in which he swims.

Continue reading “Leg Mounted Beer Bottles for Underwater Propulsion”

Laser-Cut Lamp With Magic Switch

This laser-cut lamp is an awesome example of what you can do with a laser cutter and a bit of creativity. It was completely laser cut and features no fasteners, except for a bit of glue.

[PaisleyGarbage] has been making lamps for a while now and had the concept for this one early on. After rendering a model of it on the computer, he decided it was finally time to try making it. It wasn’t quite as easy as he thought it’d be, but the challenges along the way only help you to learn when doing a project like this.

He laser cut alternating strips of wood and acrylic to create the unique sandwiched light look of the final product. Instead of using fasteners or anything, he even slid the pieces together on acrylic dowels keeping the design as minimalist and clean as possible. But the part we really like is the magnetic switch.

Continue reading “Laser-Cut Lamp With Magic Switch”

Triple Sensor Mailbox Alert Really Delivers

Messing with the U.S. Mail is not something we generally recommend. But if you build your own mailbox like [Bob] did, you stand a much better chance of doing what you want without throwing up any flags.

Speaking of throwing up flags, one of the coolest parts of this project is the toy mailbox inside the house that monitors the activity of the real box. When there is mail waiting, the flag on the toy mailbox goes up. Once [Bob] retrieves the mail, the flag goes back down automatically. A magnet in the real box’s flag prevents false alarms on the toy box provided the Flag Raised On Outgoing protocol is followed. Best of all, he built in some distress handling: If the mailbox door is left hanging open or the battery is low, the toy mailbox waves its flag up and down.

So, where do the three sensors come in? A magnetic reed switch on the wall of the real mailbox pairs with a magnet in the flag. To determine whether the door is open, [Bob] initially used another magnetic reed switch on the underside of the box. This didn’t work well in wet weather, so he switched to a mechanical tilt sensor. An IR LED on the ceiling and a phototransistor on the floor of the box work together to detect the presence of mail.

[Bob]’s homebrew mailbox has a false back that hides a PIC 16F1825. When the door opens, the PIC wakes up, turns on a MOSFET, and checks the battery level. It waits two minutes for the mailman to do his job and then reads the flag state. After comparing the IR LED and phototransistor’s states, it sends a message to the toy mailbox indicating the presence or absence of mail.

The toy mailbox holds a modified receiver board and a servo to control its flag. [Bob] has made the code and schematics available on his site. Walk-through video is after the jump.

Continue reading “Triple Sensor Mailbox Alert Really Delivers”

Fail of the Week: Robotic 1950 Mercury Boogies, Won’t Come Back From Dead Man’s Curve

[Dave] wanted to make an Arduino robot out of a remote-control 1950 Mercury. He removed the RC portion from the car and kept the drive and steering motors. The idea was to use three ultrasonic rangefinders in the grille real estate and move the car forward based on the longest distance detected.

He initially used a Seeed motor controller and some Grove cables soldered to his sensors to power the steering. It went forward, but only forward, and [Dave] decided the motor controller and the car’s steering motor weren’t playing well together.

[Dave] had the idea to use relays instead to both power the motor and determine polarity. Now, the Merc was turning and avoid obstacles about half the time, but it was also getting dinged up from hitting walls. He figured out that his sensor arrangement was making the car turn immediately and decided to give the program information from the wheels with a reed switch and a rare earth magnet. The only problem is that the caliber of magnet required to trip the reed switch is too heavy and strong. [Dave] and has concluded that he simply can’t exercise the kind of control over the car that he needs. and will build his own robot chassis.

Update: Check out a video of [Dave]’s car after the break.

2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which runs every Wednesday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

Continue reading “Fail of the Week: Robotic 1950 Mercury Boogies, Won’t Come Back From Dead Man’s Curve”

Solar Powered Lawn Mower Cuts the Grass So You Don’t Have To


It takes a lot of power and energy to keep grass levels down to an appropriate level; especially when it’s hot out. If cool glasses of lemonade aren’t around, the task at hand may not be completed any time soon causing the unkempt blades of green (or yellow) vegetation outside to continue their path of growth towards the sun.

Instead of braving the oven-like temperatures which will inevitably drench the person in sweat, this solar powered robot has been created ready to take on the job. With the heart of an Arduino, this device shaves down the grass on a regular basis, rather than only chopping down the material when it gets too long. This helps to save electricity since the mower is only dealing with young and soft plants whose heads are easily lopped off without much effort.

Internally, the robot’s circuitry interfaces with an underground wiring system that defines the cutting zones within the lawn, and proves to be a simple, accurate, and reliable approach to directing the robot where to go. If the device travels under a shaded area, a battery kicks in supplying energy to the engine. When sunlight is available, that same battery accumulates the electricity, storing it for later.

Continue reading “Solar Powered Lawn Mower Cuts the Grass So You Don’t Have To”