EV History: The Lightning Precedes The Thunder

In 1988, a bunch of engineers from Hotzenwald, Germany, came together and decided that it is time for the future of mobility: A new, more modern and environmentally friendly car should put an end to fossils and emissions while still being fun to drive. “It should become a new kind of car. Smaller, lighter, cleaner – and more beautiful” is how future CEO Thomas Albiez described his mission. For the first time in automotive history, this series car would be designed as an all-electric vehicle from the start and set a new standard for mobility. The project was given the codename “Hotzenblitz” (“Hotzen Bolt”) to indicate how the idea came to them: Like a lightning bolt. The snarky regional term also came with a double meaning: Imaginary lightning bolts, used for insurance fraud.

hotzenblitz_chassis
Hotzenblitz frame construction (origin unknown, image source)

Unnoticed by the rest of the world, they founded Hotzenblitz Mobile. Industrial Designer Harold Schurz was contracted to design the chassis for the Hotzenblitz, which was then modeled into a prototype chassis. The self-funded team moved fast. An external motorsports company helped to develop the tubular steel frame, and soon their vision took on shape. After the team had fitted a motor and transmission into the frame, CEO Thomas Albiez himself installed the traction battery and drive train. The team felt confident with the result, and in July 1990, during an open house day in the office, they somewhat spontaneously decided to call Green Tech entrepreneur and chocolate mogul Alfred Ritter.

Alfred Ritter had experienced financial losses after the Chernobyl Disaster. Many agricultural regions, including several hazelnut plantations that were vital to Alfred’s chocolate business, were irreversibly lost to the fallout contamination. It was then when he turned to the green energy business, founding the Paradigma group to manufacture solar collector systems and pellet heaters. When Thomas and the team called, Alfred jumped on the idea of an electric car. In the same year, Alfred Ritter and his sister Marli Hoppe-Ritter became shareholders in the company and helped to finance the future of the Hotzenblitz.

Continue reading “EV History: The Lightning Precedes The Thunder”

One Man’s Awesome Collection Of Projects Done Over A Lifetime

[Robert Glaser] kept all his projects, all of them, from the 1960s to now. What results is a collection so pure we feel an historian should stop by his house, if anything, to investigate the long-term effects of the knack.

He starts with an opaque projector he built in the third grade, which puts it at 1963. Next is an, “idiot box,” which looks suspiciously like “the Internet”, but is actually a few relaxation oscillators lighting up neon bulbs. After that, the condition really sets in, but luckily he’s gone as far as to catalog them all chronologically.

We especially enjoyed the computer projects. It starts with his experiences with punch cards in high school. He would hand-write his code and then give it to the punch card ladies who would punch them out. Once a week, a school-bus would take the class to the county’s computer, and they’d get to run their code. In university he got to experience the onset of UNIX, C, and even used an analog computer for actual work.

There’s so much to read, and it’s all good. There’s a section on Ham radio, and a very interesting section on the start-up and eventual demise of a telecom business. Thanks to reader, [Itay Ramot], for the tip!

Kerbal Space Program for the Apple II

[Vince Weaver] tried to use his time machine to jump a few years in the future to get a less buggy version of Kerbal Space Program, but as usual with time travel, nothing went right and he ended up heading to 1987. Finding himself in an alternate timeline where KSP had been released for the Apple II, he brought back a copy.

Well, that’s the narrative proposed by [Vince Weaver] on his YouTube channel. The real story, and hack, being that he wrote a version of KSP for the Apple II in Applesoft Basic. He has used the language for the ridiculous before. You can build a rocket, select a pilot, launch, and if you’re lucky (or skilled), reach orbit.

We loaded up his disk image on an Apple II emulator and gave it a try. We managed to murde—lose a few pilots, but that was about it.  It was hard not to get distracted by the graphics and remember to point the rocket the right direction. Either way, it was a neat bit of fun in retro computing. Video after the break.

Continue reading “Kerbal Space Program for the Apple II”

The Man Who Didn’t Invent The Personal Computer

[John Blankenbaker] did not invent the personal computer. Museums, computer historians, and authors have other realities in mind when they say [John]’s invention, the KENBAK-1, was the first electronic, commercially available computer that was not a kit, and available to the general population.

In a way, it’s almost to the KENBAK’s detriment that it is labelled the first personal computer. It was, after all, a computer from before the age of the microprocessor. It is possibly the simplest machine ever sold and an architecturally unique machine that has more in common with the ENIAC than any other machine built in the last thirty years..

The story of the creation of this ancient computer has never been told until now. [John], a surprisingly spry octogenarian, told the story of his career and the development of the first personal computer at the Vintage Computer Festival East last month. This is his story of not inventing the personal computer.

Continue reading “The Man Who Didn’t Invent The Personal Computer”

Custom Case Lends Retro Look to Smart TV

Refits of retro TVs and radios with the latest smart guts are a dime a dozen around Hackaday. And while a lot of these projects show a great deal of skill and respect for the original device, there’s something slightly sacrilegious about gutting an appliance that someone shelled out a huge portion of their paycheck to buy in the middle of the last century. That’s why this all-new retro-style case for a smart TV makes us smile.

GE 806 restored by Steve O'Bannon
1940s GE 806 restored by Steve O’Bannon

Another reason to smile is the attention to detail paid by [ThrowingChicken]. His inspiration came from a GE 806 TV from the 1940s, and while his build isn’t an exact replica, we think he captured the spirit of the original perfectly. From the curved top to the deep rectangular bezel, the details really make this a special build. One may quibble about not using brass for the grille like the original and going with oak rather than mahogany. In the end though, you need to work with the materials and tooling you have. Besides, we think the laser cut birch ply grille is pretty snazzy. Don’t forget the pressure-formed acrylic dome over the screen – here’s hoping that our recent piece on pressure-forming helped inspire that nice little touch.

This project was clearly a labor of love – witness the bloodshed after a tangle with a tablesaw while building the matching remote – and brought some life to an otherwise soulless chunk of mass-produced electronics.

[via r/DIY]

The Immersive, VR, Internet of Things Unicycle

Want something that you’ll try for fifteen minutes before realizing it’s extremely stupid and has limited utility before throwing it in the back of a closet to eventually sell at a yard sale? No, it’s not the Internet of Things, but good guess. I’m speaking, of course, about unicycles.

[retro.moe] is a unicycle and Commodore 64 enthusiast, and being the enterprising hacker he is, decided to combine his two interests. This led to the creation of the Uni-Joysti-Cle, the world’s first unicycle controller for the Commodore 64, and the first video game to use this truly immersive, better-than-an-Oculus unicycle controller.

The build began with the creation of Uni Games, the unicycle-enabled video game for the Commodore 64. This game was coded purely in 6502 assembly and features realistic physics, cutting edge graphics, and two game modes. It’s available on [retro.moe]’s site for the C64 and C128 jin PAL and NTSC formats.

Every game needs a controller, and for this [retro.moe] turned to his smartphone. A simple Android app with a few buttons to send up, down, left, and right commands to an ESP8266 chip attached to the C64’s joystick connector.

While a smartphone transmitting controller commands may seem like a vastly over-engineered joystick, there’s at least one thing a smartphone can do that a joystick cannot: poll an accelerometer. When the joystick senses movement, it transmits movement commands to the video game. Strap this phone to the pedal of a unicycle, and it’s the world’s first unicycle controller for a video game. Brilliant, and [retro.moe] can ride that thing pretty well, too.

Thanks [nfk] for sending this one in.

Continue reading “The Immersive, VR, Internet of Things Unicycle”

Split-flap Train Display Uses Punch Cards; Serviced with Station Ingenuity

short but highly detailed documentary by [Krzysztof Tyszecki] explores the split-flap display system in place at the Łódź Kaliska train station in Poland as well as the efforts needed by the staff to keep it running and useful to this day. Split-flap displays might be old technology, but many are still in use throughout the world. But even by those standards, the unit at Łódź Kaliska is a relic you wouldn’t expect to see outside a museum. “I doubt you’ll find an original anywhere else,” says a staff member. It requires constant upkeep to remain operational, and meeting the changing demands of a modern station within the limitations of the original system takes some cleverness. “In general the failure rate of the device is terrible,” he adds.

Operator console for Czech PragotronThe system runs on punch cards. You can’t buy them anymore, so a local printer makes them – several hundred are needed every time there is a schedule change. The punching pliers (which also can no longer be purchased) get so worn out they replace the pins with custom-made ones from a local locksmith. The moving parts of the card reader have split-pins which need to be replaced every week or two – the stress of repeated movement simply wears them away. There’s nothing to do but replace them regularly. The assembly needs regular cleaning since dust accumulates on the cards and gets into the whole assembly. The list goes on… and so does the station.

There is no computation in the modern sense – it’s an electromechanical signing system managed and updated by human operators. It has more in common with a crossbar switch based telephone exchange than anything else. The punch cards are just a means of quickly, accurately, and repeatedly setting the displays to known states.

The short documentary goes into a lot of detail about every part of the system. The cards themselves are described in detail (1:07), as is the operator’s routine (2:27). We even see the back end controller (9:41), as well as see a split-flap module taken apart and tested (14:33) with an old tester the staffer isn’t sure will even work – but as with everything else we see, of course it does.

Split-flap displays are fascinating pieces of technology. We have even seen people build their own split-flap displays from scratch!

Continue reading “Split-flap Train Display Uses Punch Cards; Serviced with Station Ingenuity”