Update: Live video played on LED strip display

update-live-video-on-led-strip-display

[Paul] took this LED display along with him to Maker Faire. To give it some interactivity he figured out a way to make it play live video. It is also activated using some stomp actuators built from piezo speaker elements and rubber floor mats.

This moves his original project in new directions. Back in February he was showing off the RGB LED strip display. He had it playing video but that was all dependent on using previously processed files. This upgrade uses a BeagleBone Black (the newest rendition of the ARM-based development board). [Paul] had tried using a Raspberry Pi board but had trouble with the webcam (mounted above the LED display) dropping frames. With the new board he is able to use the Video4Linux API to capture 30 frames per second and push them out to the display.

So far he’s had five out of the 1920 LEDs die on him. This shows off a couple of good things about using strips like this. A dead pixel doesn’t affect its neighbors. And replacement is as easy as cutting the ribbon on either side of the bad component, then soldering a new segment in place.

 

Anti-Tetris project is a study in hand tracking

anti-tetris

The game of Anti-Tetris is played by standing in front of a monitor and watch falling Tetris pieces overlaid on a video image of your body. Each hand is used to make pieces disappear so that they don’t stack up to the top of the screen. We don’t see this as the next big indie game. What we do see are some very interesting techniques for hand tracking.

An FPGA drives the game, using a camera as input. To track your hands the Cornell students figured out that YUV images show a specific range of skin tones which can be coded as a filter to direct cursor placement. But they needed a bit of a hack to get at those values. They patched into the camera circuit before the YUV is converted to RGB for the NTSC output.

Registering hand movement perpendicular to the screen is also a challenge that they faced. Because the hand location has already been established they were able to measure distance between the upper and lower boundaries. If that distance changes fast enough it is treated as an input, making the current block disappear.

[Read more...]

North Street Labs try to spice up a game of Tic-Tac-Toe

tic-tac-toe-stomp-box

The team at North Street Labs really went all out with this Tic-Tack-Toe stomp box. At its most basic it’s a blinky version of the simple two-player game. But there’s always some added appeal when you make large manifestations of normally small items; the 10x Arduino is a good example of this.

The project is NSL’s qualifying entry for this year’s Red Bull Creation Contest (has it already been a year since the last contest?). A special Arduino shield was produced once again, this time it features hardware necessary to control LED strips… a lot of them. That led to the creation of this box, which houses a ton of strip sections inside to light the grid based on tapping one of the red buttons with your foot. We’d image the game would be seldom used at your hackerspace, but they take it to show off at the local children’s museum and it’s a huge hit with the kids!

Life meter gives a real life measure of video game health

water-light-health-bar

This hack makes the virtual real by displaying your video game character’s health meter as a column of illuminated water.

The build video, which you’ll find embedded after the break, is really quite remarkable. The column is a clear piece of pipe anchored at one end by hand-tightened plumbing drain fittings. This allows [Bfayer] to attach a flexible bladder which he constructed for the project. An actuator pushes a hinged board up against the bladder to raise and lower the water level in the tube.

Alone that’s pretty impressive, but [Bfayer] went the extra mile and then some. He uses a four-way fitting at the bottom of the meter. One fork connects to the bladder, another allows air to be injected using an aquarium pump. The bottom of the fitting has a clear window so that an RGB LED array can shine into the water which was doped with highlighter ink to pick up the colored glow. To pull the whole thing together he coded the custom control interface seen above.

[Read more...]

A clock that uses sixty RGB pixels

OLYMPUS DIGITAL CAMERA

Here’s a project inspired by a highly polished art piece. [Tobias] has been working on his own RGB LED clock which uses one light for each minute in an hour. He was inspired to start the project after seeing the Equinox clock. That one used a little PCB for each LED, and included an acrylic bezel and diffusers for each light. With the advent of LED pixel strings assembling one of these for yourself has become quite a bit easier.

The key part of the project is the laser-cut plywood frame which has a finger between each digit in order to perfectly space the lights. Each pixel is hot glued in place, with the Arduino board which drives them at the center of the frame. These lights are super bright, so [Tobias] also included a light dependent resistor which allows the system to measure ambient light and modulate the pixel brightness accordingly.

There are four parts to his project post so make sure you take some time to click around in order to get all the gritty details.

Add some animated bling to your GQ duds

geeky-tie-uses-animated-leds

This tie turned VU meter has us asking: Will anyone be able to look you in the eye during a conversation? It uses an integrated microphone and microcontroller to make a single-column display made of RGB LEDs move to ambient sound.

It shouldn’t be hard to guess that this project is another build from [Becky Stern]. She’s been on fire lately, offering up glowing football helmets and a turn-signal backpack. This uses the same family of components as the latter. A Flora board brings an Arduino to the party. It drives sixteen RGB LED pixels which are addressed using a 1-wire protocol. Sound is measured through a microphone and amplifier breakout board.

Since the hardware gets in the way of a full-windsor, the tie used for the project is a breakaway version which uses velcro. But because you need the needle and (conductive) thread to sew on the components it wouldn’t be hard to alter any tie to perform like this.

Don’t miss the high-quality video tutorial which we’ve embedded after the break.

[Read more...]

NASA inspired circadian rhythm lights

circadian-rhythm-light-rig

After reading about an initiative between NASA and Boeing to develop lights for the International Space Station [Rasathus] decided to give it a go at building his own. The project uses RGB pixels to build a circadian rhythm light installation. Without the normal rise and fall of the sun the sleep wake schedule for the astronauts can be pretty rough. This uses color and intensity of light in a well-defined schedule to help alleviate that. [Rasathus] is trying to bring his project in well under the $11.1 million mark which was established for the ISS.

The light modules he’s using are from a strand of LEDs from Adafruit. Each is driven by a WS2801 controller, a common driver used for easy and complicated projects like this huge ball of light which our own [Jesse Congdon] tackled. The board above is the start of an adapter board for interfacing with the Raspberry Pi GPIO header. [Rasathus] wanted to make certain he didn’t fry the control electronics so he built some protection into this adapter. The control software is covered in the second portion of  the write up. We’ve embedded the video from that post after the break.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 92,182 other followers