Hacklet 106 – Robots That Teach

One of the best ways to teach electronics and programming is with hands-on learning. Get the concepts off the computer screen and out into the real world. Students of all ages have been learning with robots for decades. Many older Hackaday readers will remember the turtle robots. These little ‘bots would drive around drawing shapes created in the logo programming language. This week’s Hacklet is all about the next generation of robots that teach electronics, mechanics, programming, and of course, hacking. So let’s check out some of the best educational robot projects on Hackaday.io!

edubotWe start with [Tom Van den Bon] and Edubot Controller (Benny). Buying one or two robots can get expensive. Equipping a classroom full of them can break the bank. [Tom] is hoping to make robots cheaper and more accessible with Edubot, his entry in the 2016 Hackaday prize. Edubot rides on a 3D printed frame with low-cost gear motors for a drive system. Edubot’s brain is an STM32F042, a low-cost ARM processor from ST micro. The micro and motor drives are integrated into a custom board [Tom] designed. He’s has even begun creating lesson plans so students of various ages and skill levels can participate and learn.

microbotNext up is [Joshua Elsdon] with Micro Robots for Education. Big robots can be intimidating. They can also cause some damage when hardware and software created by budding engineers doesn’t operate as expected. Tiny robots though, are much easier to wrangle. [Joshua ] may have taken tiny to an extreme with these robots. Each robot is under 2 cm square. The goal is for each one to cost less than  £10 to produce. These micro bots have big brains with their ATmega328P micro controllers. [Joshua] is currently trying to figure out a low-cost way to produce wheels for these robots.

Next we have [shamylmansoor] with 3D printed mobile robot for STEM education. Robots are expensive, and international shipping can make them even more expensive. [Shamyl] is shooting for a robot which can be made locally in Pakistan. 3D printing is the answer. The robot’s chassis can be printed on any FDM printer. Wheels,and tires are low-cost units. Motors are RC servos modified for continuous rotation. The brains of the robot is an Arduino Mega 2560, which should provide plenty of inputs for sensors. [Shamyl] even included a solderless breadboard so students can prototype circuits and sensors right on the robot’s body.

 

plobotFinally we have [Rodolfo] with Plobot. Plobot is a robot designed for the youngest hackers – those from four to seven years old. [Rodolfo] designed Plobot to be programmed with RFID cards. Each card contains a command such as move forward, turn, start, and reset. Many of the language mechanics are inspired by the Scratch programming language. Plobot’s processor is a Sanguino, running [Rodolfo’s] custom code. An ESP8266 allows Plobot to be connected to the outside world via WiFi. [Rodolfo] has even created a custom over the air update system for Plobot’s firmware. Plobot has already been tested with students, where it made a great showing. We’re hoping both [Rodolfo] and Plobot do well in the 2016 Hackaday Prize!

If you want more mind hacking goodness, check out our brand new educational robot list! Did I miss your project? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Chomper Antweight Robot Kraves Combat

Antweight combat robots are really lightweight. [Carter Hurd] used leftover materials to create a dustpan robot with a chomper (comically made from a Krave cereal box) to hold captured competitors in place. The main body is made of foam board. The only metal is in the front wedge which is lifted by a servo to help trap the other robot.

[Carter] fully expects the foam to be eaten by competitors during the match. This led him to position his electronics at the center of the robot to keep it from being damaged. We’ll have to see how well that works. He’s hoping for an advantage over vertical flip weapons since they may simply cut through the foam without getting enough purchase for a flip.

The electronics is on a modular board so it can be easily moved from one robot to another. All that is on the board is the RC receiver and two FingerTech Tiny Electronic Speed Controllers. A battery is slung underneath.

Best of luck for Krave ‘bot eating up the opposition. We’ve seen some other light weight designs in the cardboard competitors from the Columbia Gadget Works makerspace.

Continue reading “Chomper Antweight Robot Kraves Combat”

Robot Beats Piano Tiles

Machines running out of control are one of the staples of comedy. For the classic expression, see Chaplin’s “Modern Times”. So while it starts out merely impressive that [Denver Finn]’s robotic fingers can play an iPad piano video game, it ends up actually hilarious. Check out the linked video to see what we mean.

Continue reading “Robot Beats Piano Tiles”

Open Source Robotics With WireBeings

Everyone needs a cute robotic buddy, right? [Matthew Hallberg] created WireBeings, an open source 3D printed robotic platform. Looking like a cross between Wall-E and Danbo, WireBeings is designed around the Arduino platform. We do mean the entire platform. You can fit anything from an Arduino micro to a Mega2560 stacked with 3 shields in its oversized head. There’s plenty of room for breadboards and custom circuits.

WireBeings is designed to be 3D printed. All the non-printable parts are commonly available. Gear motors, wheels, the ubiquitous HC-SR04 ultrasonic sensor, and a few other parts are all that is needed to bring this robot to life. Sketches are downloaded via USB. Once running, WireBeings can communicate via an HC-06 Bluetooth module.  If the Arduino isn’t enough power for whatever project you’re working on, no problem. [Matt] designed WireBeings to carry a smartphone. Just connect the robot and phone via Bluetooth, and let the phone’s processor do all the heavy lifting. What if you don’t have a spare phone? Check our report on hacks using prepaid Android Smartphones.

We could see WireBeings as the centerpiece for a “learn Arduino” class at a hackerspace. Start with the classic blinky sketch on one of the robot’s eyes. Build from there until the students have a fully functioning robot.

There is definitely room for improvement on the WireBeings project. [Matt] made the rookie mistake of going with a single 9-volt battery to power his creation. While a 9V is fine for the Arduino, those motors will quickly drain it. [Matt’s] planning on moving to a LiPo in the future. Why not stop by the project page and give him a hand?

Continue reading “Open Source Robotics With WireBeings”

Robotic Vacuums Get Torn-down For Design Showdown.

Fictiv runs a 3D printing shop. They have a nice interface and an easy to understand pricing scheme. As community service, or just for fun, they decided to tear-down two robot vacuums and critique their construction while taking really nice pictures.

The first to go is the iRobot 650 model. For anyone who’s ever taken apart an iRobot product, you’ll be happy to know that it’s the same thousand-screws-and-bits-of-plastic ordeal that it always was. However, rather than continue their plague of the worst wire routing imaginable, they’ve switched to a hybrid of awfulness and a clever card edge system to connect the bits and pieces.

The other bot is the Neato XV-11. It has way fewer screws and plastic parts, and they even tear down the laser rangefinder module that’s captured many a hacker’s attention. The wire routing inside the Neato is very well done and nicely terminated in hard-to-confuse JST connectors. Every key failure point on the Neato, aside from the rangefinder, can be replaced without disassembling the whole robot. Interestingly, the wheels on both appear to be nearly identical.

In the end they rate the Neato a better robot, but the iRobot better engineered. Though this prize was given mostly for the cleverness of the card edge connectors.

Bistrobot: Make Me A Sandwich

Reading this article in the San Francisco Chronicle sounds very familiar if you’ve owned a hand-built robot of any kind. “Bistrobot” is a pretty sweet sandwich-making robot. It toasts bread on the fly and applies peanut butter, jelly, honey, apple butter, and/or a few other gloopy dispensable delicacies at the behest of human customers. Watch the video below and we guarantee that you’ll want to toss a couple bucks into it, even if you don’t like toasted PB&J sandwiches.

The video makes everything look peachy, like a 3D printer on a good day. Check out the jelly nozzle zig-zagging across the half-sandwich — it’s very familiar. Indeed the whole machine seems like something we could build. But as we all know, continuous duty has a way of finding the flaws in our designs. The Chronicle article is part triumph, and part tale of woe, with the builder being called in to repair the Bistrobot for the “zillionth” time.

Continue reading “Bistrobot: Make Me A Sandwich”

Autonomous Tractor Brings In The Harvest

[Matt Reimer] is a farmer in Southwestern Manitoba, Canada. It’s grain country, and at harvest time he has a problem. An essential task when harvesting is that of the grain cart driver, piloting a tractor and grain trailer that has to constantly do the round between unloading the combine harvester and depositing the grain in a truck. It’s a thankless, unrelenting, and repetitive task, and [Matt]’s problem is that labour is difficult to find when every other farmer in the region is also hiring.

His solution was to replace the driver with a set of Arduinos and a Pixhawk autopilot controlling the tractor’s cab actuators, and running ArduPilot, DroneKit, and his own Autonomous Grain Cart software. Since a modern tractor is effectively a fly-by-wire device this is not as annoying a task as it would have been with a tractor from several decades ago, or with a car. The resulting autonomous tractor picks up the grain from his combine, but he reminds us that for now it still deposits the harvest in the truck under human control. It is still a work-in-progress with only one harvest behind it, so this project is definitely one to watch over the next few months.

Writing from the point of view of someone who grew up on a farm and has done her share of harvest-time tractor driving it’s possible to see both the strengths and weaknesses of an autonomous grain cart. His fields on the Canadian prairie are very large and flat, there is plenty of space and the grain makes its way from the field to the elevator in a truck. To perform the same task in the smaller and irregular fields of southern England for example with a mile round trip down country lanes to the grain store would be a much greater challenge. Aside from that it’s worth noting that his John Deere is a 220hp 4WD workhorse that is capable of going over almost any terrain on a farm with very few obstacles able to stop it. This thing can do serious damage to life and property simply by running it over or driving straight through it, so safety has a dimension with an autonomous tractor in a way that it never will with for example a vacuum cleaner or even a lawnmower.

Those observations aside, this kind of technology undeniably represents a step change in farming practice on a par with the move from horse power to tractors in the first half of the last century. However the technological barriers that remain end up being solved, it’s likely that you’ll see plenty more machines like this in the fields of the future.

The video below the break shows the autonomous grain cart in action. Plenty of big-sky tractoring action, and for those of you unfamiliar with farming it should provide some understanding of the task of getting grain from combine to store.

We’ve talked about robotic farming more than once here at Hackaday. The gantry-based Farmbot, the six-legged Prospero robot farmer, or another hexapod confusingly also called Farmbot, for example. But these have all been hacker’s solutions to the problem using the concepts with which they are familiar. What makes [Matt]’s project different is that it is a farmer’s solution to a real farming problem by automating the machinery he already uses to do the job. Farmers have been doing what we would now call hacking at the hardware of their craft since time immemorial, [Matt]’s work is just the latest manifestation of a rich heritage.

Continue reading “Autonomous Tractor Brings In The Harvest”