DyIO is a huge robotics development board

[Kevin] wrote in to tell us about the robotics development platform he’s been working on for the last few years. He calls his device the DyIO, and looks like an extremely easy way to get a robot up and running quickly.

Because the DyIO stands for Dynamic Input & Output, [Kevin] thought it was important to put 24 separate IO pins in his build. These pins can serve as 24 digital inputs or outputs, a few analog inputs and PWM outs, or even DC motor controls.

What’s really interesting is the SDK that [Kevin] and his team chose to build. With this SDK, you can program the DyIO in Java or just about any other language you would want. Already, [Kevin] and his team have built a few interesting projects around the DyIO, like a hexapod robot and animatronic pokemon. While we’re sure something awesome beyond imagination is waiting to be built with the DyIO platform, you can check out these already-completed builds after the break.

[Read more...]

Build your own self-driving car

If you’ve ever wanted your own self-driving car, this is your chance. [Sebastian Thrun], co-lecturer (along with the great [Peter Norvig]) of the Stanford AI class is opening up a new class that will teach everyone who enrolls how to program a self-driving car in seven weeks.

The robotic car class is being taught alongside a CS 101 “intro to programming” course. If you don’t know the difference between an interpreter and a compiler, this is the class for you. You’ll learn how to make a search engine from scratch in seven weeks. The “Building a Search Engine” class is taught by [Thrun] and [David Evans], a professor from the University of Virginia. The driverless car course is taught solely by [Thrun], who helped win the 2005 DARPA Grand Challenge with his robot car.

In case you’re wondering if this is going to be another one-time deal like the online AI class, don’t worry. [Thrun] resigned as a tenured professor at Stanford to concentrate on teaching over the Internet. He’s still staying at Stanford as an associate professor but now he’s spending his time on his online university, Udacity. It looks like he might have his hands full with his new project; so far, classes on the theory of computation, operating systems, distributed systems, and computer security are all planned for 2012.

Oh boy do we want to ride a giant inflatable robot

We’ve seen videos of people attaching chairs to gigantic welding robots and riding them around the shop, and while that would be fun for a little bit, the joy would be fleeting. Flight simulators built on a Stewart Platform are becoming old hat. Now there’s a new robot we want to ride.

[Saul Griffith] from Otherlab has been working on pneumatic robots for some time now, and he just wrapped up his Ant-Roach build seen above. It’s a 15-foot-long cross between an anteater and a cockroach that’s completely inflatable and can actually walk with the help of an air compressor.

The ‘muscles’ of the ant-roach are fabric actuators that contract when inflated. Of course this makes the mechanics look like something out a biology book, but the robot is still a neat piece of engineering. The ant-roach weighs in at 70 pounds but could probably support a half-ton of riders.

From the videos after the break, we can see that the ant-roach looks a little clumsy when walking. [Travis Deyle] sent in his contribution that details an amazing inflatable robotic arm that can beat any human in an arm wrestling match. Now we can’t wait for a giant anthropomorphized bouncy castle to start lumbering to a children’s carnival.

[Read more...]

I have seen the future, and it has Swarmanoids

swarmanoid_robots_rescue_book

Imagine that you want a book that is located on a shelf several rooms over, but you do not want to get out of your chair. Short of developing telekenesis on the spot, there’s little you can do other than get up and fetch the book yourself – that is, unless you have an army of Swarmanoids to do your bidding.

This robotic swarm is the pet project of [Dr. Marco Dorigo] from the Université Libre de Bruxelles, Belgium, and is impressive to say the least . As the Mission: Impossible-esque video plays out, you see several different robots working in concert, flying, climbing, and driving around to fetch a book from a shelf. The robots have no information regarding their surroundings, forcing them to learn and “speak” to one another in order to reach their goal once the target has been located.

It really is amazing to watch these robots work together, but don’t take our word for it. Check out the Swarmanoids in action below.

[via Geek.com]

[Read more...]

Transforming robot is more than meets the eye

transformer_copter

Let’s face it – building robust robots isn’t exactly easy. When designing them, builders often focus on a single method of locomotion in attempts to create a robust, reliable means of transportation. Whether it moves on the ground or in the air, there are always compromises to be made when designing a robot with the ability to travel over variable terrain. Looking to change that, researchers at the Center for Distributed Robotics have recently unveiled a robot that can travel on the ground with ease, then take to the skies in a matter of seconds.

The robot is rolls along the ground on a set of wheels mounted at either end. When it is time to fly, it pushes itself up onto one end before extending its rotors. As you can see in the video below, the transition occurs pretty quickly.

The current prototype is pretty fragile and carries quite the hefty price tag . More robust revisions are already in the works, so expect to see more in the coming months.

[Thanks Sandeep]

[Read more...]

Coming soon to a store near you: remote-control cockroaches

roboroach

Given a box full of cockroaches, the first thing most of us would do is try to locate the nearest source of fire. Lucky for the roaches, the team over at Backyard Brains look at things a bit differently than we do.

Their latest effort combines cockroaches and electronics to create a bio-electrical hybrid known as the RoboRoach. Using control circuitry donated from a HexBug inchworm and some 555 timers to create properly timed pulses, they have been able to control the gross movement of cockroaches. Stimulation is directly delivered to the antennae nerves of the cockroaches, enabling them to tell the roach which direction to turn and when.

Currently there are some ahem, bugs in the system, which they are working diligently to resolve. Only about 25% of the roaches they wire up can be controlled at present. Once that ratio improves however, they will be looking to offer RoboRoach as a beta product. If you are aiming to add a beetle air force to supplement your remote-controlled cockroach army, be sure to check this out.

Continue reading to see a video of the RoboRoach in action.

[Read more...]

Der Wafflemeister 3000

der_wafflemeister3000

When people think about robots, a few different things come to mind. We like robots because they take care of tedious work. Robots are great for accomplishing tasks in hazardous environments too. When the [Chalmers Robotics Society] thinks about robots however, they think, “Breakfast!”

The CRS constructed a sweet automatic waffle cooking machine known as the Wafflemeister3000. It can produce up to 5 waffles at a time, cooking them to a nice golden brown in a little over 3 minutes. Think about that for a second – that’s about 90 waffles an hour!

This project isn’t exactly new, with the second iteration having been completed in 2007. However, since the third version features a 400% increase in production volume, we thought it was worth a mention.

Be sure to check out the video below of the Wafflemeister3000 doing its thing.

[via Neatorama]

[Read more...]