Tank Boots Are A Dangerous Way To Get Around Town

Rollerskates are all well and good, but they’re even more fun when they’re powered. Then again, why stick with wheels, when you can have the off-road benefits of tracked propulsion? That’s precisely what [Joel] was thinking when he built this impressive set of Tank Boots.

The build uses a set of tracks from a tracked snowblower, sourced for $50. The tracks are a simple design sans suspension, consisting of a pair of plastic wheels inside the tracks and run via a chain drive. Each snowblower track was given a metal frame with a ski boot and a motor, gearbox, and controller straight out of a power drill. Power was courtesy of a lithium-polymer battery pack.

Riding the boots isn’t easy, with falls and tumbles rather common. Regardless, they get around great offroad in a way that regular rollerblades never could. Bolted together, they make a great tank chair, too. We’ve actually looked at the benefits of tracks versus wheels before, too. Video after the break.

Generate Positivity With Machine Learning

Gesture recognition and machine learning are getting a lot of air time these days, as people understand them more and begin to develop methods to implement them on many different platforms. Of course this allows easier access to people who can make use of the new tools beyond strictly academic or business environments. For example, rollerblading down the streets of Atlanta with a gesture-recognizing, streaming TV that [nate.damen] wears over his head.

He’s known as [atltvhead] and the TV he wears has a functional LED screen on the front. The whole setup reminds us a little of Deep Thought. The screen can display various animations which are controlled through Twitch chat as he streams his journeys around town. He wanted to add a little more interaction to the animations though and simplify his user interface, so he set up a gesture-sensing sleeve which can augment the animations based on how he’s moving his arm. He uses an Arduino in the arm sensor as well as a Raspberry Pi in the backpack to tie it all together, and he goes deep in the weeds explaining how to use Tensorflow to recognize the gestures. The video linked below shows a lot of his training runs for the machine learning system he used as well.

[nate.damen] didn’t stop at the cheerful TV head either. He also wears a backpack that displays uplifting messages to people as he passes them by on his rollerblades, not wanting to leave out those who don’t get to see him coming. We think this is a great uplifting project, and the amount of work that went into getting the gesture recognition machine learning algorithm right is impressive on its own. If you’re new to Tensorflow, though, we have featured some projects that can do reliable object recognition using little more than a Raspberry Pi and a camera.

Continue reading “Generate Positivity With Machine Learning”

Motorized Inline Skates Run On Makita Power

Inline skates can be fun, but like most wheeled contraptions, they’re even better when motorized. With just such a goal in mind, [The Real Life Guys] decided to whip up a set of powered skates, running on Makita power!

To get power to the ground, the third wheel on each skate is modified to have a sprocket attached. A Makita drill is then fitted to the skate, transferring power to the wheel through a 90-degree gearbox and a chain drive. The drill is controlled by removing the trigger from the shell and hooking it up with an extended cable.

It’s a lairy setup that probably takes serious practice to use effectively, but does allow for fancy tricks like differential steering if you really want to show off. It’s a great example of using a powerdrill as an all-inclusive motion setup, with the battery, motor and drivetrain already integrated in a neat, tidy package. It’s not the first time we’ve seen a powered set of ‘skates, either! Video after the break.

Continue reading “Motorized Inline Skates Run On Makita Power”

Powered Skateboards Are Passe; Skelecs The New Hotness

[Harris] has an interesting answer to the inevitable question about what he did on his summer vacation: he built a pair of electric roller blades.  [Harris] is an Electrical Engineering student at the University of Nottingham, and he completed the first version of what he calls Skelecs just before he went back to college. He has documented the process from the initial concept and building his own controller board, through his failures at correctly drilling the steel base, to his first drive down the road.

His build uses a pair of small 120W hub motors attached to a steel chassis, which is attached to a pair of cannibalized rollerblade boots.

It’s a bit of a Frankenstein build (he currently has the batteries and controller stuffed into a pants pocket, which isn’t really a practical long-term solution), but it works. A bit too well, in fact: [Harris] says that a combination of speed and a bumpy road detached one of the batteries and sent him flying. He’s not letting a minor injury and a bit of blood put him off, though: he’s already started work on version 2, which will use lighter aluminum construction and a pair of omniwheels for easier steering and more control. We’ll believe that claim when we see it.

Remember, powered skateboards are over — non hackers got their hands on them so they’re commonplace. Hipster hackers need to drop that build and start on your own pair of Skelecs.

Continue reading “Powered Skateboards Are Passe; Skelecs The New Hotness”

Know Your Speed On Rollerblades

[Anurag] is a computer engineering student with a knack for rollerblading. Rollerblades are not a transportation device that are often fitted with speedometers, so [Anurag] took that more as a challenge and designed this Arduino-powered computer to give him more information on his rollerblade rides.

The device uses an Arduino as the brain, and counts wheel revolutions (along with doing a little bit of math) in order to calculate the speed of the rider. The only problem with using this method is that the wheels aren’t on the ground at all times, and slow down slightly when the rider’s foot is off the ground. To make sure he gets accurate data, the Arduino uses an ultrasonic rangefinder to determine the distance to the ground and deduce when it should be taking speed measurements.

In addition to speed, the device can also calculate humidity and temperature, and could be configured to measure any number of things. It outputs its results to a small screen, but it could easily be upgraded with Bluetooth for easy data logging. If speed is truly your goal, you might want to have a look at these motorized rollerblades too.

Wear A Helmet, Rollerblades With Attitude

Wireless controller, more powerful custom-made motors, stronger frame, and with a name like DeathBlades, we can’t think of a single reason why you would prefer heel treads, well everyone was young at one time.

[Charleg] has been testing out a slightly new frame, despite having only half the motors necessary, and is getting great results hitting around 23Wh/mi. If you’re looking to build your own, his blog has a post for nearly every aspect of the design.

[Thanks Jerome Demers]

Wheels And Weed Whackers


Perhaps you’ve seen this image before: a young kid tooling around on a pair of inline skates, pushed forward by a weed whacker cycle. While the instructions for this device would seem fairly obvious (attach wheel to weed whacker) the writeup appears to be nonexistent. If you have any information, do let us know, but in the meantime, enjoy these other weed whacker powered projects.

Continue reading “Wheels And Weed Whackers”