[Dino] upgrades his robot chassis

This is the fourth iteration that [Dino] has produced for his all-terrain robot. Just before this it was more of a turtle, with an aluminum pan shell. We think his upgrade to MicroRAX frame parts makes it look a lot better, and lightens the load so it can get around better as well.

It’s hard to tell from the picture, but many of the components are from a Roomba robot. The four motors, and the mainboard are all from units he picked up on eBay. To drive the motors he tapped into the H-bridge signals on the control board using a Seeeduino. His write-up (linked above) shares some of the details regarding the electronics, but the video after the break shows the development and assembly of the new chassis. It’s made from extruded aluminum bars which easily connect to each other with the system’s brackets. To interface with the non-standard parts he makes his own brackets from some aluminum sheet stock. It’s similar to other modular building materials, but the MicroRAX is a great size/weight for a small design like this one.

[Read more...]

Pep up your house cat’s boring wintertime life

With winter upon us, and all the windows shut, [Garfield] and [Socks] can get a little restless. But [Dino] is determined to keep his furry friends entertained through the cold dark months. He hit the junk box, and used some interesting fabrication techniques to build the Chase-a-Mouse motorized cat toy.

The toy is popular with the cats because it incorporates two traditionally satisfying features; something to chase, and an obstacle to chase it around. The base of the unit is a long plank which is held up from the floor by a couple of inches. The loop of rope which spans the board’s length has a mouse attached to it with about six inches of string. When the motor is flipped on it bounces and jerks its way around the circuit, darting in and out of the space below the base.

As you can see in the video after the break the motor is a bit loud. [Dino] used the sweeper motor from a Roomba for this. It might freak the kitties out at first, but curiosity will get the better of them eventually. It’s a quick build, and we love the drill-turned-lathe that is used make the wooden pulley for the system.

[Read more...]

Robot vacuum makes cleaning into a game

This is not a Roomba hack, but a ground-up vacuum cleaner robot build. It’s the result of a class project from six students at the Royal Institute of Technology in Sweden. There’s a slew of information available in their paper, but fair warning that it’s an 8.6 MB PDF file that we couldn’t get Google to translate. We were able to skim the PDF and cut and paste to translate the interesting bits we found.

Unlike a Roomba, which just uses a little sweeper to pick up debris, this robot actually includes a vacuum. The image above shows that the cylindrical body is wrapped in an LED matrix, with an ultrasonic sensor on the front for obstacle avoidance. The robot uses a CAN bus to control the various modules inside. We don’t think there’s any autonomous function, but that’s made up for by the remote control. It communicates via a ZigBee module, and includes a d-pad, touch screen, and accelerometer.We’re a little bit hazy on how the games are played, but there are at least two interactive version: one called ball, and another modeled after the classic game of missile command.

You can check out the source code for the project in their repository, or join us after the break for two demo videos.

[Read more...]

Roomba used to map indoor air quality

roomba_based_air_quality_tester

The next time you set off for a long day in the coal mines, forget the canary – bring your Roomba along instead!

While we are pretty sure that canaries are no longer used in the mining industry, this Roomba hack could make a suitable replacement if they were. A team from the Public Laboratory for Open Technology and Science (PLOTS) recently showed off a Roomba which they modified to test an area’s air quality. Using an Arduino and a volatile organic chemical (VOC) detecting air quality sensor, the Roomba goes about its normal business, lighting an LED any time it encounters overly contaminated air. When captured via a long exposure image, the process creates a “bad air” map of sorts, with the polluted areas highlighted by the glow of the LED.

While the Roomba currently only detects VOCs, the team plans on adding additional sensors in the near future to expand its functionality. The Roomba is merely a proof of concept at the moment, but we imagine that similar technology will be adapted for use in unmanned explorations of chemically hostile environments, if that hasn’t happened already.

[via DVice] [Image via TechnologyReview]

Converting a Roomba into a Mars rover

When we first heard of [Dino]‘s all-terrain Roomba, we hoped the ‘stair-climbing Roomba’ problem had finally been solved, but the final build turned out much cooler.

A year ago, [Dino] built a small robot based on a rocker-bogie suspension. This suspension system has been used on every Mars rover, including the huge Mars Science Labratory scheduled to land on Mars next year. [Dino] beefed up the suspension from the previous version and changed the wheels and center of gravity. Now, the little Roomba rover seems quite capable of climbing over objects as tall as itself.

The control of the rover is similar to other Roomba hacks we’ve seen – just tapping a few transistors. [Dino] is using a Seeduino and an ultrasonic sensor to avoid collisions. [Dino] says that he’s thinking about pivoting each wheel independently to get around the skid-steering, but maybe an omnidirectional wheel would be better suited.

Check out the video after the break for a demo of the Roomba rover traversing the treacherous boulder strewn terrain in [Dino]‘s garage.

[Read more...]

Roomba shares all of its daily activity on the web

tweeting_roomba

Instructables user [matchlighter] wanted to see what he could program his Roomba to do, so he decided he would make his little cleaning machine report its status on Twitter whenever something happened.

He popped open the Roomba’s case to access its serial connector, crafting a simple interface cable from some spare Cat5 he had sitting around. He added a small voltage regulator between the Roomba and his Arduino in order to protect it from the high power output present while the Roomba is charging. Once the proper bits were in place, he hooked the Roomba’s serial interface to the Arduino and attached a SparkFun WiFly shield to allow for wireless communications. After a bit of coding, the Roomba was sharing its activities with the entire world on Twitter.

Not only did he want the Roomba to tweet, but he decided that he also wanted the ability to control it from the web. He created a simple interface using a handy library he found online and was sending cleaning commands to the Roomba in short order.

While there is no video of the Roomba in action, you can check out what it is up to here, and there’s plenty of code to be had on his Instructables page.

One-eyed, one-armed metal rolling Roomba robot

roomba_robot

[Erik] was looking for a sturdy robotics platform and was initially considering the iRobot Create, until he found that he could score a Roomba Discovery series for a fraction of the price. The Discovery includes a battery, which is missing from the iCreate, though it also has all of the standard vacuum bits included as well.

He immediately removed all of the vacuum parts once he got his hands on the Roomba, and began adding the support structure to house the rest of his robot’s components. The robot is controlled via a small laptop which sits on top of the Roomba’s base, and features a panning and telescoping webcam to provide feedback to the operator.

The robot has been under construction for a little over a year now, and has had a few upgrades over that time. The original laptop was swapped out for a newer dual-core model, and the webcam was upgraded to a model featuring motion tracking. The whole thing has been skinned in thin sheet metal for a sleek look, and he has added a servo-driven arm as well.

The project is not quite complete, and he hasn’t really stated what he plans on using the robot for, but it looks good so far – we can’t wait to see it when it’s finished.

Follow

Get every new post delivered to your Inbox.

Join 94,095 other followers