Sailing (Directly) Into The Wind

Humans have been sailing various seas and oceans for thousands of years, and using boats for potentially even longer than that. But as a species we wouldn’t have made it very far if it was only possible to sail in the same direction the wind is blowing. There are a number of methods for sailing upwind, but generally only up to a certain angle. [rctestflight] wondered if there was some way of sailing straight upwind instead and built this rotary sail craft to test the idea.

Normally a boat sailing upwind will sail approximately 45° into it, then “tack” 90° across the wind until they’re at another 45° angle from the wind, this time facing the opposite direction. This back-and-forth nature is not the most efficient path, so this vessel uses a few propellers to bypass the traditional sail. The first iteration, built on a sleek catamaran hull, uses a large propeller to catch the wind’s energy, then transfers it mechanically through a set of shafts to an underwater prop.

It took a few tries to get the size and pitch of both propellers narrowed down to where the boat would move forward into the wind, but move it does. A second major iteration of the build uses a single shaft with no gears, with the trade-off that neither propeller is facing an ideal direction, but this has the added benefit of the boat naturally pointing itself upwind.

While none of the designs are speed demons, the concept is sound enough. It’s just that, in most cases, performing multiple tacks to get upwind is acceptable compared to the extreme efficiency losses and drag from propeller-driven sailing crafts like these. A more effective way of propelling a boat upwind, at least using modern technology, might be to trade sails for solar panels.

Continue reading “Sailing (Directly) Into The Wind”

Solar Boat Makes Waves

The two best days in a boat owner’s life are the day they buy it, and the day they sell it. At least, that’s the common saying among people who actually spend money to buy a boat. [saveitforparts], on the other hand, looks like he’s going to have many more great days on this boat than that since he cobbled it together nearly for free, and he won’t even need to purchase any fuel for it since it runs on solar power.

The build starts with [saveitforparts] heading out to a literal pile of boats in his yard, unearthing an old single-person sailboat, and then fixing the major problems with its hull. With a new coat of red paint, the focus turns to the drivetrain. Propulsion is handled by an electric trolling motor found at an auction for $8 and is powered by an off-the-shelf battery bank provided by a sponsor of his channel. A pair of solar panels (which were traded for) fitted to outriggers keep the battery bank topped off, and there’s plenty of energy left over with this setup to charge drone batteries and other electronics while out on the lake.

[saveitforparts] reports that the single-passenger solar boat is remarkably stable on the water and fairly quick at full speed thanks to its light weight. He even hypothesizes that it could be fished from. The only thing not particularly stable was towing it to the lake, as the rough roads and permanently-attached solar panel outriggers weren’t particularly congruent with each other. If you’re looking for something similar to carry a few passengers, though, have a look at this much larger version.

Continue reading “Solar Boat Makes Waves”

This Radio Control Sailboat Uses 2X4s

When [PeterSripol] was a kid, he made a simple sailboat from a scrap piece of 2×4 and some napkin sails. He’s not 8 years old anymore, but he decided he wanted to make another 2X4 sailboat using the skills he’s learned since he was a kid.

You’ll have to get past storytime and mice, but the build skill is evident. There’s a RC rudder, a keel with lead shot and overall it is a good looking boat for such a simple build.

Continue reading “This Radio Control Sailboat Uses 2X4s”

Hacker Challenge: Sail The Atlantic

We found it incredible that — apparently — no one has sailed an autonomous sailboat across the Atlantic successfully. Compared to an electric craft, sail-powered platforms ought to reduce having to carry batteries or other fuel and enable long-duration missions. The problem, of course, is the sailing conditions in the Atlantic.

The challenge is the focus of the Microtranssat challenge which started in 2010. You can think of the challenge as a race, but not in the conventional sense. Participants can launch their 8 foot (or less) craft any time between July and December, and it doesn’t matter which direction they go. They simply have to cross the Atlantic. If more than one boat makes it, the fastest is the winner.

The current leader is the SailBuoy. This Norwegian entry has made it halfway, but no further. However, it has sailed quite a distance in other places, so perhaps it will make it soon. You can see SailBuoy afloat in the video below.

Continue reading “Hacker Challenge: Sail The Atlantic”

Sailboat Throws Motor Overboard, Adds Sensor Array

For those not familiar with sailing, it might seem like an obsolete way to get around on the water. This isn’t 1492 anymore, and it’s pretty easy to go out and get a boat with a motor to get where you need to go. Sailboats, however, are still one of the most efficient ways to travel. There are essentially no fuel costs, and maintenance on them is often easier than on a boat with an engine. Not to mention the fun involved in flying a hull on a catamaran. Anyway, if you’re [gwilken], you can bring your sailboat even further into modern times by building your own sensor array for it.

The ultimate goal of this project was to get all gauges and sensors reporting data to an iPad, rather than to random gauge clusters around the ship. This includes environmental conditions, speed, and motor status (most larger sailboats have a motor for getting around the marina). A Raspberry Pi ties it all together, including a GPS antenna for monitoring location. [gwilken] also includes a WiFi antenna and a cell antenna for maintaining a network connection for reporting all of this information. With this connectivity, he can also control some functions of the boat as well.

[gwilken] made the decision to ditch the conventional gas motor for a more energy-efficient electric motor. This also has the perk of being essentially maintenance-free, and can even charge his battery in regen mode while his boat is under sail. The sailboat is now fully equipped for the 21st century, in a similar way to another boat’s gauge cluster that was recently featured.

Canary Island Team Wins World Robotic Sailing 2016

If you’re like us, you had no idea that there even was a World Robotic Sailing Championship. But we’re glad that we do now! And congratulations to the team of A-Tirma G2, the winning boat. (Link in Spanish, difficult to translate — if you can figure out how, post in the comments?)

The Championship has apparently been going on for nine years now, and moves to a different location around the world each year. The contests for 2016 (PDF) are by no means trivial. Besides a simple there-and-back regatta, the robot boats have to hold position, scan a prescribed area, and avoid a big obstacle and return quickly back to their lane. All of this with wind power, of course.

The winning boat used solid sails, which act essentially as vertical wings, and was designed for rough weather. This paid off in the area-scanning test; the winds were so strong that the organizers considered calling it off, but team A-Tirma’s boat navigated flawlessly, giving them enough points to win the event even though camera malfunction kept them from completing the obstacle avoidance.

stationkeepingtrackingUnless you’ve sailed, it’s hard to appreciate the difficulty of these challenges to an autonomous vehicle. It’s incredibly hard to plan far ahead because the boat’s motive power source, the wind, isn’t constant. But the boat has, relatively speaking, a lot of inertia and no brakes, so the robot has to plan fairly far in advance. That any of the 2-4 meter long boats could stay inside a circle of 20 meters is impressive. Oh, and did we mention that A-Tirma did all of this calculating and reacting on solar power?

Because the wind is so fickle, drone sailboats are much less popular than drone motorboats — at least using the Hackaday Blogpost Metric ™. The hackerboat project is trying out sails, but they’re still mostly working on powered propulsion. We do have an entry in the 2016 Hackaday Prize, but it’s looking like the development process is in the doldrums. Still, sailing is the best way to go in the end, because windpower is essentially free on the open ocean, which means less work for the solar panels.

As far as role-models go, you’ve basically got the entrants in the World Robotic Sailing Championships. So kudos to the A-Tirma team, and thanks [Nikito] for the tip!

A Green Powered Sailboat

Drones fill the sky raining hellfire on unsuspecting civilians below. Self-driving cars only cause half as many accidents as carbon-based drivers. Autonomous vehicles are the future, no matter how bleak that future is. One thing we haven’t seen much of is autonomous marine vehicles, be they submarines, hovercrafts, or sailboats. That’s exactly what [silvioBi] is building for his entry into the Hackaday Prize: a sailboat that will ply the waters of Italy’s largest lake.

Every boat needs a hull, but this project will need much more, from electronics to solar panels to sensors. Luckily for [silvio], choosing a hull is as simple as heading over to eBay. [silvio] picked up a fiberglass boat hull for about €40 that fill fit both is needs and his workbench.

The electronics are a bit trickier, but the basic plan is to cover the deck with solar panels, and use a few sensors including GPS, IMU, and an anemometer to steer this sailboat around a lake. Building an autonomous vehicle is a hard challenge, and for the electronics, [silvio] has a trick up his sleeve: he’s using redundant electronics. All the sensors are connected via an I2C bus, so why not put two microcontrollers on that bus in a master and slave configuration? It won’t add much mass, and given the problems had by a few of the teams behind robotic sailing competitions, a bit of redundancy isn’t a bad thing to have.

The HackadayPrize2016 is Sponsored by: