Hackaday Prize Entry: Invisible

[Kate Reed] found a quote by a homeless person that said “No one sees us”, which led her to exploring what it actually means to be invisible — and if we actually choose to be invisible by hiding away our emotions, sexual preference, race or income. She realized that too often, we choose to only see what we want to see, rendering all the rest invisible by looking away. Her public art campaign and Hackaday Prize entry “Invisible” aims to increase social awareness and strengthening the community by making hidden thoughts, feelings and needs visible.

Continue reading “Hackaday Prize Entry: Invisible”

3D Printed Zoetrope Sculpture squashes 4 Dimensions into 3

This fascinating project manages to be both something new and something old done in a new way. Artist [Akinori Goto] has used 3D printing to create a sort of frameless zoetrope. It consists of a short animation of a human figure, but the 3D movements of that figure through time are “smeared” across a circular zone – instead of the movements of the figure being captured as individual figures or frames, they are combined into a single object, in a way squashing 4 dimensions into 3.

zoetrope-1“Slices” of that object, when illuminated by a thin shaft of light, reveal the figure’s pose at a particular moment in time. When the object is spun while illuminated in this way, the figure appears to be animated in a manner very similar to a zoetrope.

There are two versions from [Akinori Goto] that we were able to find. The one shown above is a human figure walking, but there is a more recent and more ambitious version showing a dancer in motion, embedded below.

Since a thin ray of light is used to illuminate a single slice of the sculpture at a time, it’s also possible to use multiple points of illumination – or even move them – for different visual effects. Check out the videos below to see these in action.

Continue reading “3D Printed Zoetrope Sculpture squashes 4 Dimensions into 3”

Madison Maker Faire

Saturday was the first Madison Mini Maker Faire. In this case, it’s Madison, Wisconsin (sorry Madison, SD I didn’t mean to get your hopes up) where I live. Of course I’m not the only crazy hardware hacker in the area. As soon as I got there I almost tripped over Ben Heckendorn who also lives in the area.

ben-heck-gameboy

Check out that incredible Giant Game Boy the he was exhibiting. Okay, you think to yourself: Raspberry Pi and an LCD. Wrong! He’s actually using an FPGA to drive the LCD. Even cooler, it’s using an original Game Boy brain board, which the FPGA is connected to in order to translate the handheld’s LCD connector signals to work with the big LCD.

Continue reading “Madison Maker Faire”

Autonomous Electro-musical Devices

Circuit-bending is tons of fun. The basic idea is that you take parts of any old electronic device, say a cheap toy keyboard, and probe all around with wires and resistors, disturbing its normal functioning and hoping to get something cool. And then you make art or music or whatever out of it. But that’s a lot of work. What you really need is a circuit-bending robot!

Or at least that’s what [Gijs Gieskes] needed, when he took apart a horrible Casio SA-5 and grafted on enough automatic glitching circuitry to turn it into a self-playing musical sculpture. It’s random, but somehow it’s musical. It’s great stuff. Check out the video below to see what we mean.

We also love the way the autonomous glitching circuit is just laid over the top of the original circuitboard. It looks like some parasite out of Aliens. But with blinking LEDs.

Continue reading “Autonomous Electro-musical Devices”

ROBOCHOP! It Slices, Dices, But Wait! There’s More…

You’re gunna love my cuts. 

KUKA robots are cool. They’re both elegant and terrifying to watch in action as they move unyieldingly to preform tasks. Not many of us get to use industrial tools like this because they aren’t exactly trivial to wield (or cheap!). Artists [Clemens Weisshaar] and [Reed Kram] however created an installation that allows anyone to potentially control one of these orange beauties to do their bidding… all from the safety and comfort of a computer chair.

For their piece, “ROBOCHOP”, the artists developed a web app that allows you to easily manipulate the surface of a virtual cube. You can rotate for positioning and then use a straight or curved line tool to draw vectors through its surface and subtract material. Once you’re finished sculpting your desired masterpiece, one of the four KUKA robots in the installation will retrieve a 40 x 40 x 40 cm block of foam and shape it into a real-life version of whatever you created in the app.

Screen Shot 2015-03-06 at 1.03.39 PMStarting today you can visit the project’s website and upload your own mutilated cube designs. If your design is selected by the artists, it will be among the 2000 pieces carved by the robots throughout their installation during CeBit in Hanover. After the show, your cube spawn will then be mailed to you free of charge! The only way I could see this being cooler, is if they filmed the process so you could watch your shape being born.

Anyhow, I personally couldn’t resist the invitation to sculpt Styrofoam remotely with an industrial grade robot arm and came up with this gem.

You can go to their page if you want to give the app a go, and really… why wouldn’t you?

Continue reading “ROBOCHOP! It Slices, Dices, But Wait! There’s More…”

Ro-Bow, The Violin Playing Robot

There are robots that will vacuum your house, mow your lawn, and keep their unblinking electronic eyes on you at all times while hovering hundreds of feet in the air. How about a robot that plays a violin? That’s what [Seth Goldstein] built. He calls it a ‘kinetic sculpture’, but there more than enough electronics and mechatronics to keep even the most discerning tinkerer interested.

There are three main parts of [Seth]’s violin-playing kinetic sculpture. The first is a bow carriage that draws the bow across the strings using an electromagnet to press the bow against the strings. The individual strings are fingered with four rubber disks, and a tilting mechanism rotates the violin so the desired string is always underneath the bow and mechanical fingers.

As far as software goes, the Ro-Bow transforms MIDI files into robotic mechanization that make the violin sing. From what we can tell, it’s not quite as good as a human player; only one string at a time can be played. It is, however, great at what it does and is an amazing mechanical sculpture.

Video Below.

Continue reading “Ro-Bow, The Violin Playing Robot”

What Could Possibly Go Wrong Giving a Robot a Chainsaw?

Chainsaw wielding robot

[Morgan Rauscher] is a rather eccentric artist, inventor, maker, professor… jack of all trades. His latest project is called the Art-Bot – and it’s an 8′ robotic arm equipped with a chainsaw. Did we mention you can control it via arcade buttons?

He’s been building sculptures for over 10 years now, and has enjoyed observing the evolution of automated manufacturing – from CNC machines to laser cutters and even now, 3D printers. He loves the technologies, but fears machines are making it too easy – distancing us from the good old physical interaction it once took to make things with a few simple tools. His Art-Bot project attempts to bridge that gap by bringing tactile transference to the experience.

The cool part about the Art-Bot is that it is mostly made of recycled materials – in particular, bicycle parts!

Making a robot from bicycle parts is really not that difficult, and I highly recommend it.

The rest of the robot consists of electric actuators (linear), the control circuitry, and of course — a chainsaw. For safety’s sake, [Morgan] also built a polycarbonate wall around it to protect users from it going on a murderous rampage wood chips and other debris thrown from the robot.

Continue reading “What Could Possibly Go Wrong Giving a Robot a Chainsaw?”