Surfing Around on a Self-Balancing Cloud

Throughout time it’s just been plain cool to genie around from point A to B on some form of personal portable hardware. Understandably so, it was the goal of [Dane Kouttron] to modify and improve the common standard in such a way that anyone could hop on his board and ride without a period of flailing to keep balance. In his Flying Nimbus project, the rider floats aloft a single power-driven wheel that will even do the balancing bit for you.

Inspired by some interesting aluminum scraps and an old 3 phase DC servo driver, [Dane] starting conjuring ideas of combining the two in order to produce his own self balancing form of transportation. A chunky reused tire from a local go-kart track turned out to serve as his wheel of choice which would mount between the feet of the rider. After ordering a 48v hub motor and waiting for it to make its way over from China, [Dane] took the time to model all of the individual parts, motor, and wheel in CAD to figure out the needed measurements for the custom pieces he’d later fabricate to fit around them. The aluminum frame that the rider stands upon not only houses and conceals the power cells and electronics running the central wheel, it also illuminates white light from the sides to stand out at night. Along the road of troubleshooting, [Dane] eventually scored a complementary top-notch servo drive from AMC, who ultimately wanted to see his project rolling as badly as he did. There is a load of detailed documentation on the layers of problem solving that went into the project on his blog, as well as more on the hardware used by [Dane] to get the board actively balancing. Seeing the final product should further enforce that there is no better way to get around then on the likes of something you made yourself:

Continue reading “Surfing Around on a Self-Balancing Cloud”

Phoenard: Arduino Phone as Small as An Arduino Mega

 

Hanging out at one side of the Atmel booth at Maker Faire was [Pamungkas Sumasta] who was showing off his Arduino cellphone called Phoenard. We really like the form-factor but its hackability is where it really shines. [Sumasta] showed off the menu system which is quite snappy and makes it simple for you to add your own applications. Software isn’t the only thing you can customize, as there’s a connector at the bottom of the phone. He showed off a breadboard attachment which was hosting LEDs of various colors. Their intensity can be altered using a simple slider app on the touchscreen. But there’s more power if want it. Also on exhibit was a self-balancing robot body which has a connector at the top for the phone.

[Sumasta] won the Atmel Hero contest and we assume that’s how he made it all the way to San Francisco from The Netherlands for Maker Faire. You can learn a few more technical details about Phoenard on the Facebook page.

Yet Another Self-Balancing Unicycle

unicycleScitech

No one has time to hone their balancing skills these days, and if building your own Segway doesn’t generate enough head-turning for you, then the self-balancing unicycle from the guys at [Scitech] should. Their build is chain-driven, using easy-to-find salvaged Razor scooter parts. Throw in a motor controller, 5DOF IMU and some batteries and it’s almost ready to burn up the sidewalks in hipster-tech style.

Some of the previous unicycle builds we’ve seen are a little on the bulky side, but the [Scitech] cycle aims for simplicity with its square tube steel framing and footrests. As always, unicycle builds like these take some effort on behalf of the rider: shifting your weight controls steering and throttle. The [Scitech] gang also discovered that it’s usually best when you don’t accidentally wire the motors up to the controller backwards. We recommend that you find a helmet and watch the video after the break.

Too-cool-for-unicycle hackers can build a dangerously fast e-skateboard instead.

Continue reading “Yet Another Self-Balancing Unicycle”

Best robot demos from ICRA 2013

best-robots-from-2013-ICRA

The 2013 IEEE International Conference of Robotics and Automation was held early in May. Here’s a video montage of several robots shown off at the event. Looks like it would have been a blast to attend, but at least you can draw some inspiration from such a wide range of examples.

We grabbed a half-dozen screenshots that caught our eye. Moving from the top left in clockwise fashion we have a segmented worm bot that uses rollers for locomotion. There’s an interesting game of catch going on in the lobby with this sphere-footed self balancer. Who would have thought about using wire beaters as wheels? Probably the team that developed the tripod in the upper right. Just below there’s one of the many flying entries, a robot with what looks like a pair of propellers at its center. The rover in the middle is showing off the 3D topography map it creates to find its way. And finally, someone set up a pool of water for this snake to swim around in.

Continue reading “Best robot demos from ICRA 2013″

Clean and minimal self-balancing robot

vertibot-self-balancer

The VertiBOT is a self balancing robot project taken on for the purpose of exploring how the sensors work in conjunction with some PID algorithms.

[Miguel] didn’t roll any extras into the build. But you have to admit that makes it look interesting. There’s almost nothing to it and yet, as you can see in the clip after the break, he accomplished everything he set out to.

The body and wheels are 3D printed, with black bands for tires to help give it some traction. Note the connection in the center of the body which allowed him to make a longer part by printing in two stages. On the electronic side of things he’s using an Arduino Nano. A level converter lets it communicate with the 6 DOF IMU board which is used to detect movement. Three potentiometers provide a way for him to tweak the PID loop without having to bother with reflashing any code. And of course there’s an option to control it remotely thanks to a Bluetooth module also in the mix.

Continue reading “Clean and minimal self-balancing robot”

This cube is made for walkin’

cubli

Meet Cubli, a research project which aims to make a cube that can walk around without using any appendages. It’s a research project at the Institute for Dynamic Systems and control in Switzerland. Anyone else thinking about our beloved companion cube right now?

The robotic experiments are based on angular momentum. Inside of the cube there are center mounted motors which each spin a wheel. Three of these are mounted perpendicular to each other to give the cube the ability to change its position along any axis. This is best shown by the first video after the break where just a single side of the assembly is demonstrated. A square frame starts at a rest position. You see the wheel spin up and it is suddenly stopped, which causes the momentum of the wheel to pop the square frame up onto one corner. The wheel then switches into a second mode to keep it balancing there. The final mode is a controlled fall. This theoretically will let the cube move around by falling end over end. So far they’re not showing off that ability, but the second demo video does show the assembled cube balancing on one corner.

Continue reading “This cube is made for walkin’”

Self-balancing unicycle using Arduino and Sparkfun IMU

Raptor-Bike-self-balancing-unicycle

Here’s proof that you can build cool stuff with simple tools. This self-balancing unicycle uses an Arduino and a five degree of freedom IMU from Sparkfun to keep the rider upright. Well, it’ll keep you upright as long as you have good side-to-side balance. But that’s true of any unicycle, right?

The Raptor was built by [Nick Thatcker] who is no stranger to self-balancing transportation. A few years back he built a Segway clone and the same type of geared motor used in that project also went into this one. I connects to the wheel with a chain, allowing him to keep the motor hidden in the saddle. He gets between 90 and 120 minutes of used on one charge with a top speed of 10 MPH. The motor could move you along faster but he has limited this in firmware to ensure it has enough power to ‘catch up’ if you lean too far forward.

Don’t miss the demo after the break. If you like this unicycle there are several others worth looking at.

Continue reading “Self-balancing unicycle using Arduino and Sparkfun IMU”