Reading Sensors with Scratch

Scratch + Arduino

Scratch, a graphical programming language developed by MIT’s Media Lab, is an excellent tool for teaching programming. [Daniel] created an Arduino Sensor Shield to interface with Scratch, allowing for real-world input to the language.

This board is a derivative of the Picoboard, which is designed for use with Scratch. Fortunately, the communication protocol was well documented, and [Daniel] used the same protocol to talk to the graphical programming environment. The shield includes resistance sensing, a light sensor, a sound sensor, and a sliding potentiometer.

The main goal was to create a board that could easily be built by DIY etching. This meant a one sided board with as few jumpers as possible. The final design, which can be downloaded and etched at home, is single sided and uses only one jumper. Detailed steps on testing the board are provided, which is very helpful for anyone trying to build their own.

This board is perfect for educational purposes, and thanks to [Daniel]’s optimizations, it can be built and tested at at home.

Artificial skin lets robots feel

BioTac Artificial Skin Technology is sure to be a storm with Robotics Designers. Giving them the opportunity to add a third sense to there robotic marvels. Now they can have the sense of touch to go along with existing technologies of sight and of sound.  Thanks to the technology coming out of the University of Southern California making this possible.

They have chosen to call their sensor BioTac, which is a new type of tactile sensor designed to mimic the human fingertip with its soft flexible skin. The sensor makes it possible to identify different types of texture by analyzing the vibrations produced as the sensor brushes over materials. This sensor is also capable of measuring pressure applied and  ambient temperature around the finger tip, expect to see this technology in next gen prosthetics. Let us know your thoughts on it.

[via technabob]
Continue reading “Artificial skin lets robots feel”

Update: many improvements to optical-sensor-based piano

[Sebastian] wrote in to update us about the optical sensor project he started a couple of years ago. You’ll find his most recent update here, but there are four different post links after the break that document various parts of his progress.

You may not recall the original project, but he was looking to add resolution and sensitivity to the keystroke of an electric keyboard. With the sensors built, he started experimenting with using the force data to affect other parts of the sound. His post back in January shows this bending the pitch as the keys receive more force from the player.

In March he installed the sensor array in an old piano. The video he posted where he plays the piano, but we hear the sound generated from the sensor inputs. We’ve embedded it after the break.

Last week he published two posts. They cover a redesign of the sensor boards, and the panelization work he’s done to help bring down manufacturing costs. The base unit was redesigned to use an AT90USB microcontroller which consolidates the separate chips used in the previous version.

Continue reading “Update: many improvements to optical-sensor-based piano”

Collecting Radon data in the name of science and safety


When [Chris Nafis] built an addition onto his historical home he found that a Radon problem, previously mitigated with plenty of concrete, seemed to rear its ugly head yet again. He eventually resigned himself to installing a Radon fan and detector – the latter of which offered no way to store measurement data. He wanted to get a better feel for the short and long-term Radon measurements in his house, in hopes of finding some correlation between temperature, moisture levels, and the total amount of Radon emitted from the ground.

To do this, he disassembled a pair of Radon detectors located in different parts of his house, each of which he wired up to an Arduino. Using his oscilloscope to determine which PCB leads controlled the different LED segments on the displays, he quickly had the Arduinos scraping measurement data from the sensors. [Chris] figured the best way to keep track of his data was to do it online, so he interfaced the microcontrollers with Pachube, where he can easily analyze his historical readings.

An additional goal he set for himself is to trigger the Radon fan only when levels start rising in order to save a little on his electric bill. With his data logging operation in full swing, we think it should be a easy task to accomplish.

Sensor array tries to outdo the other guys

The team over at the Louisville Hackerspace LVL1 is not going to be outdone when it comes to collecting environmental data. They put together this Frankenstein of sensor boards that lets you collect a heap of data showing what is going on around it.

At the center-left a small Arduino clone is responsible for collecting the data. Data storage is not talked about on their write-up, but if that’s an ATmega328 chip you should be able to work out an easy way to store data on the 1k of internal EEPROM. If that’s not enough, there is an I2C bus included on the board making it easy to add a compatible EEPROM.

The sensor on the bottom left should look familiar. It’s a DHT11 temperature and humidity sensor we’ve seen popping up in projects lately. But wait, there’s also a TMP102 temperature sensor; but that’s not the end of it. A BMP085 pressure sensor also includes a third temperature sensing option. Want to see when the lights go on in the room? There’s a CdS sensor and a TSL230R Lux sensor for that. An op-amp circuit can measure the sound level in the room via one of the Arduino’s ADC pins. And finally, an RTC board is used for time stamping the data.

Obviously this is overkill, and we’re sure it’s meant as a test platform for various sensors. All of them have been mounted on the protoboard and wired up using the point-to-point soldering method.

Low-power wireless home automation sensors

The line between serious research and well-executed hacks has been getting pretty blurry lately. The device above could have been designed in your basement but it actually comes from researchers at the University of Washington. They are working on low-power home automation sensors for monitoring things like humidity, temperature, air quality, and light. The key point in their research has been the use of a home’s electrical system for wireless communication. Operating at 27 MHz has proven quite efficient to the point that one of these modules placed within 10-15 feet of an electrical run can communicate with the rest of the home, powered only by a watch battery projected to last ten years.

That’s kind of exciting, it’s a heck of a lot easier to produce and distribute a set of small boards like this than to run communication wiring throughout the house. Now we just need to pair this with the Air Force’s parasitic power work and there’ll be no need for a battery at all.

[Thanks Sidhant]

Adafruit introduces the Sensor Pack 900


Our friends over [adafruit] recently released the Sensor Pack 900, a collection of parts for anyone who is interested in using analog sensors with their projects. The pack includes 9 sensors. They range from simple thermistors and hall effect sensors to sharp distance sensors. Also included in the pack are 3 unidentified components that can be used to interface with the analog sensors in the pack. At only $30, the Sensor Pack 900 seems to offer a great set of introductory components for anyone prototyping a new device.