A badminton shuttle launcher loaded with shuttles

Hackaday Prize 2023: Automated Shuttle Launcher Enables Solo Badminton Practice

If you want to get better at your favorite sport, there’s really no substitute to putting in more training hours. For solo activities like running or cycling that’s simple enough: the only limit to your training time is your own endurance. But if you’re into games that require a partner, their availability is another limiting factor. So what’s a badminton enthusiast like [Peter Sinclair] to do, when they don’t have a club nearby? Build a badminton training robot, of course.

Automatic shuttlecock launchers are available commercially, but [Peter] found them very expensive and difficult to use. So he set himself a target to design a 3D-printable, low-cost, safe machine that would still be of real use in badminton training. After studying an apparently defunct open-source shuttle launcher called Baddy, he came up with the basic design: a vertical shuttle magazine, a loading mechanism to extract one shuttle at a time and position it for launch, and two wheels spinning at high speed to launch the shuttle forward. Video after the break. Continue reading “Hackaday Prize 2023: Automated Shuttle Launcher Enables Solo Badminton Practice”

Badminton Inspired Heat Shield Aims To Fly This Year

Badminton is not a sport that most of us think about often, and extremely rarely outside of every four years at the summer Olympics and maybe at the odd cookout or beach party here or there. But the fact that it’s a little bit unique made it the prime inspiration for this new heat shield design, which might see a space flight and test as early as a year from now.

The inspiration comes from the shuttlecock, the object which would otherwise be a ball in any other sport. A weighted head, usually rubber or cork, with a set of feathers or feather-like protrusions mounted to it, contributes to its unique flight characteristics when hit with a racquet. The heat shield, called Pridwen and built by Welsh company Space Forge, can be folded before launch and then expanded into this shuttlecock-like shape once ready for re-entry. It’s unlikely this will protect astronauts anytime soon, though. The device is mostly intended for returning materials from the Moon or from asteroids, or for landing spacecrafts on celestial bodies with atmospheres like Mars or Venus.

With some testing done already, Space Forge hopes this heat shield will see a space flight before the close of 2023. That’s not the end of the Badminton inspiration either, though. It’s reported that this device can slow a re-entering craft so much that it can be caught in a net. Not exactly the goal when playing the sport, but certainly a welcome return home for whichever craft might use this system. Of course, getting down from space is only half the battle. Take a look at this other unique spacecraft that goes up in a fairly non-traditional way instead.

Robomintoner Badminton Bot To Defeat Amateur Humans

Watching robots doing sports is pretty impressive from a technical viewpoint, although we secretly smile when we compare these robots’ humble attempts to our own motoric skills. Now, a new robot named Robomintoner seeks to challenge human players, and it’s already darn good at badminton.

Continue reading “Robomintoner Badminton Bot To Defeat Amateur Humans”

Retrotechtacular: Coopering Guinness Barrels By Hand

For almost exactly 200 years, the Guinness brewery in Dublin, Ireland employed extremely skilled craftsmen to shape and construct wooden casks by hand. These men were called coopers, and plying their trade required several years of apprenticeship. The cooperage was a kind of closed society as many of the positions were passed down through generations of families. With the rise of aluminium and then stainless steel barrels in the late 1950s, the master coopers of Guinness became a dying breed.

Almost every step of the coopering process shown in this film is done without any kind of precise measurement. A master cooper like [Dick Flanagan] here needs only his eyes and his practiced judgment. His barrels start out as oak planks called ‘staves’ that have been drying in racks for at least two years. A cooper selects the staves that strike his fancy and he saws off the ends. This seems to be the only part of the process where a power tool is used.

The cooper shapes each stave by hand with axe and adze so that its ends are tapered just so. Once he has shaped enough of them to make a barrel, he arranges them in a cylinder around the inside of a metal band known as a hoop. The bound staves are steamed for half an hour to make them pliable enough for shaping.

After steaming, the splayed end of the staves are bound with wire rope to pull them close enough together that a hoop can be fitted over them. The inside of the cask is then charred with burning oak shavings, a process that seals the wood and removes its acidity. After this, the ends are sanded and the bunghole is drilled.

For each barrel, the cooper crafts a custom set of hoops. These are installed after the outside of the barrel has been shaved smooth. Finally, the heads that cap each end of the cask are made from more oak staves held together with dowel rods. This is the only time the cooper uses a tool to measure anything, and he does so to achieve the proper circumference on the heads. He bevels the edges so the heads will fit into bored-out grooves in the cask walls. Once they’re seated, the keg is ready for dark, rich stout.

Continue reading “Retrotechtacular: Coopering Guinness Barrels By Hand”