An Introduction to Casting With Nuka Cola

There’s less than a month until the next Star Wars is released, and consequently a few weeks until amateur propmakers and cosplayers go insane fabricating their own lightsabers with lightsaber cross guards and rolling robots. Until then, Fallout is pretty cool and [Bill] is here to give us an introduction to prop making with one of the defining objects of this post-apocalyptic universe. He created a real life copy of a Nuka Cola bottle and created a great introduction to resin casting in the process.

As with all proper part making endeavours, this project began with getting reasonably accurate models of the object to be copied. In Fallout, we’re lucky enough to have a way to look at a specific object while zooming and spinning around it, giving [Bill] the basic shape. The size was rather easy as well: all bottlecaps are the same size, so [Bill] just scaled the model to that.

With the model created and the part printed out, assembled, and finished, it was time to create the mold. [Bill] used a two-part silicone mold for the basic shape. The actual casting was done by rolling around a little resin on the inside of the mold. There’s no need for a solid, bottle-shaped block of resin; bottles are hollow anyway.

There are a few neat tricks [Bill] has up his sleeve, including coating the inside of the mold with aluminum powder and using a vinyl cutter to get the labels and logos exactly right. The finished product turns out great, perfect for leaving in the Wasteland for 200 years until the Sole Survivor stumbles upon it.

Video below.

Continue reading “An Introduction to Casting With Nuka Cola”

3D Printed Eyeglasses, VR Lenses

[Florian] is hyped for Google Cardboard, Oculus Rifts, and other head mounted displays, and with that comes an interest in lenses. [Floian] wanted to know if it was possible to create these lenses with a 3D printer. Why would anyone want to do this when these lenses can be had from dozens of online retailers for a few dollars? The phrase, ‘because I can’ comes to mind.

The starting point for the lens was a CAD model, a 3D printer, and silicone mold material. Clear casting resin fills the mold, cures, and turns into a translucent lens-shaped blob. This is the process of creating all lenses, and by finely sanding, polishing, and buffing this lens with grits ranging from 200 to 7000, this bit of resin slowly takes on an optically clear shine.

Do these lenses work? Yes, and [Florian] managed to build a head mounted display that can hold an iPhone up to his face for viewing 3D images and movies. The next goal is printing prescription glasses, and [Florian] seems very close to achieving that dream.

The last time we saw home lens making was more than a year ago. Is anyone else dabbling in this dark art? Let us know in the comments below and send in a tip if you have a favorite lens hack in mind.

MRRF: Flexible 3D Printing

The concession stand at the Midwest Rep Rap Festival did not disappoint when it came to the expected fare: hot dogs, walking tacos, and bananas for scale. But the yummiest things there could not be bought—the Nutella prints coming off the Ultimaker² at the structur3D booth.

3D printed gasket
Flexible gasket printed in silicone atop a rigid 3D printed engine block.

Hey, what? Yes, an Ultimaker² that can print in Nutella, icing sugar, silicone, latex, wood filler, conductive ink, polyurethane, peanut butter, and a growing list to which you should contribute. This is possible because of their Discov3ry Universal Paste Extruder add-on, which is compatible with most filament printers, especially those that use a RAMPs or Arduino control board.

A large syringe containing the substance of your choice is loaded business end up in the Discov3ry. It gets pushed through tubing that runs to the print head and out through one of many commonly available polypropylene or stainless steel tips. The structur3D team has found that printing on waxed paper works best for the materials they’ve proven out. Each syringe holds 60cc of stuff, and the Discov3ry comes with three of them. They are currently available for pre-order, with a shipping forecast of early summer.

Fail of the Week: Silicone Molding That Won’t Cure


Mold making is a hacking skill we see pop up around here from time to time. But rarely do we hear about problems in the process, and they must happen. Here’s proof. This Fail of the Week focuses on [Michael’s] unfortunate experience with failed mold making due to uncured silicone around the master mold. It’s worse than it may sound, since he lost about a pound of silicone to the fail, and we’re unsure of whether he can even use the master again (how do you clean uncured silicone off of something?). Not to mention the time lost from setting up the pour and waiting 20 hours for it to cure.

Soon after the issue presented itself [Michael] started researching to see what had gone awry and noticed that the master should have been sealed with acrylic lacquer. This gave him the opportunity to test several different finishes before making a run at the full mold once again. He picked up a variety of the paint products he could find locally, used them to coat some scraps, and globbed on some silicone to see which worked the best.  He found a couple of different primers worked well, as did both glossy and matte acrylic coatings.

If you’ve never had a reason for mold making before, keep it in mind. You’d be surprised what kind of factory-production-type things can be pulled off by 3D printing a master, and casting a silicone mold of it.

2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which runs every Wednesday. Help keep the fun rolling by writing about your past failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

DIY Heatsinking PCBs

pcb heatsink

We have covered many do it yourself PCBs before, but this video guide adds an easy way to sink heat from high power devices, which we think you might find handy.

It is a very simple process that [CNLohr] uses to keep his small RGB LED projects from overheating. It starts by using a readily available silicone thermal sheet as the substrate by applying it to copper foil. He then applies a toner-transfer circuit pattern to the copper by running the pair through a modified laminator a few times. He makes note that you have to apply the plastic backing side of the silicone sheet to the copper foil to prevent the laminator from chewing it up.

After the typical ferric chloride etching process is complete, he then uses 220 grit sandpaper to remove the toner pattern. Often steel wool is used, but because of the sensitive nature of the silicone, sandpaper works better to avoid peeling up traces.

We have featured [CNLohr] before, as he does some top-notch tutorials in his workshop — which makes for both a fascinating and distracting backdrop for the videos. This one is a bit long (~20 minutes), but is very thorough and goes through the entire process from start to finish. Check it out after the break.

Continue reading “DIY Heatsinking PCBs”

Air-powered gripper design makes them easy to produce


This invertebrate gripper uses air pressure to grab onto objects. The secret is all in the design. But you don’t have to reinvent the wheel. If you’ve got a 3D printer you can follow this guide to make your own.

The gripper is made of silicone. The trick is in designing an inner structure that deforms in one direction when pressurized. To make one or one hundred, simply download the design files and 3D print a mold. The process from there is much like the silicone band prototyping process we looked at back in March. The two-part silicone is mixed and poured in the mold. You also need to pour some on a flat surface. We were under the impression that uncured silicone would not stick to cured silicone but we were wrong. The two parts are glued together with a fresh batch of the mix. After everything has set up you can pierce the bladder with a hose in order to inject air.

Below you can see the star-shaped version being tested. There’s also a Harvard research video which shows a similar design lifting an egg.

Continue reading “Air-powered gripper design makes them easy to produce”

Molding rubber for a pre-production prototype using a 3D printed model


When you’re getting close to a production run the prototypes really need to hit the mark before pulling the trigger. [Bob’s] still hard at work getting his scoreboard off the ground and his most recent endeavor was to find a way to prototype the rubber gasket without blowing his shoestring budget. His solution was to harness the power of 3D printing to generate a model from which he could create the mold from which he cast the rubber part.

To make things a bit more difficult, the band isn’t just decorative, it doubles as the tactile part of the scoreboard buttons. You can see all six of them (before being painted to make them stand out) in the inset image above. Just above that image is a picture of the mold making process. The toothpicks are suspending the 3D printed model of the rubber band while the lower half of the silicone mold sets up. Once that had happened [Bob] sprayed release agent to ensure the top half of the mold wouldn’t stick while it cured.

The results turned out just great. Sure, this isn’t the way to go if you’re making a lot of these things. But we’re impressed at the quality he achieve for a one-off item.

If the finished product on the left looks familiar it’s because we looked in on the project last June. [Bob] continues with improvements and plans to launch a crowd funding campaign this week.