Are Today’s Engineers Worse?

Today’s engineers are just as good as the ones that came before, but that should not be the case and there is massive room for improvement. Improvement that can be realized by looking for the best of the world to come and the one we left behind.

Hey kids! Let's learn why the CE certifications exist!
Hey kids! Let’s learn why the CE certifications exist!

Survivorship bias is real. When we look at the accomplishments of the engineers that came before us we are forced to only look at the best examples. It first really occurred to me that this was real when I saw what I still consider to be the most atrocious piece of consumer oriented engineering the world has yet seen: the Campbell’s soup warmer.

This soup warmer is a poor combination of aluminum and Bakelite forged into the lowest tier of value engineering during its age. Yet it comes from the same time that put us on the moon: we still remember and celebrate Apollo. It’s possible that the soup warmer is forgotten because those who owned it perished from home fires, electrocution, or a diet of Campbell’s soup, but it’s likely that it just wasn’t worth remembering. It was bad engineering.

In fact, there’s mountains of objects. Coffee pots whose handles fell off. Switches that burned or shocked us. Cars that were ugly and barely worked. Literal mountains of pure refuse that never should have seen the light of day. Now we are here.

The world of engineering has changed. My girlfriend and I once snuck into an old factory in Louisville, Kentucky. The place was a foundry and the only building that survived the fire that ended the business. It happened to be where they stored their professional correspondence and sand casting patterns. It was moldy, dangerous, and a little frightening but I saw something amazing when we cracked open one of the file cabinets. It was folders and folders of all the communication that went into a single product. It was an old enough factory that some of it was before the widespread adoption of telephony and all documents had to be mailed from place to place.

Continue reading “Are Today’s Engineers Worse?”

Simulate Your Robot Before You Build It

[Nurgak] shows how one can use some of the great robotic tools out there to simulate a robot before you even build it. To drive this point home he builds the tutorial off of the easily 3D printable and buildable Robopoly platform.

The robot runs on Robot Operating System at its core. ROS is interesting because of its decentralized and input/output agnostic messaging system. For example, if you leave everything alone but swap out the motor output from actual motors to a simulator, you can see how the robot would respond to any arbitrary input.

[Nurgak] uses another piece of software called V-REP to demonstrate this. V-REP is a simulation suite for robotics and has a few ROS nodes built in. So in order to make a simulated line-following robot, [Nurgak] tells V-REP to send a simulated camera image to the decision making node of the robot in ROS. It then sends the movement messages back to V-REP which drives the pretend robot around.

He runs through a few more examples, proving that it’s entirely possible to become if not a roboticist, at least a really good AI programmer without ever dropping the big money on parts to build a robot.

Fail Of The Week (in 1996): The 7 Billion Dollar Overflow

The year was 1996, the European Space agency was poised for commercial supremacy in space. Their new Ariane 5 Rocket could launch two three-ton satellites into space. It had more power than anything that had come before.

The rocket rose up towards the heavens on a pillar of flame, carrying four very expensive and very uninsured satellites. Thirty-seven seconds later it self destructed. Seven billion dollars of RUD rained down on the local beaches near the Guiana Space Centre in Southern South America. A video of the failed launch is after the break.

The cause of all this was a single improper type cast in a bit of code that wasn’t even supposed to run during the actual launch. Talk about a fail.

There were two bits of code. One that measured the sideways velocity, and one that used it in the guidance system. The measurement side used a 64 bit variable, but the guidance side used a 16 bit variable. The code was borrowed from an earlier, slower rocket whose velocity would never grow large enough to exceed that 16 bits. The Ariane 5, however, could be described with a Daft Punk song, and quickly overflowed this value.

The code that caused the overflow was actually a bit of pre-launch software that aligned the rocket. It was supposed to be turned off before the rocket firing, but since the rocket launch got delayed so often, the engineers made it timeout 40 seconds into the launch so they didn’t have to keep restarting it.

The ESA never placed blame on a single contractor. The programmers had made assumptions. The engineers had made reasonable shortcuts to make their job easier. It had all made it through inspections, approvals, and finally the launch event.

They certainly learned from the event; the Ariane 5 rocket has flown 82 out of 86 missions successfully since then. It has at least five more launches contracted before it is retired in 2023 for the Ariane 6 rocket being developed now. This event also changed the way critical software and redundant systems were tested, bringing the dangers of code failure to the attention of the public for the first time.

If you want to read more, there is a great discussion on Reddit which tipped us off to this fail, a quite thorough Wikipedia article, and the original article that ran in the New York Times is mirrored here.

Continue reading “Fail Of The Week (in 1996): The 7 Billion Dollar Overflow”

Designing a High Performance Parallel Personal Cluster

Kristina Kapanova is a PhD student at the Bulgarian Academy of Sciences. Her research is taking her to simulations of quantum effects in semiconductor devices, but this field of study requires a supercomputer for billions of calculations. The college had a proper supercomputer, and was getting a new one, but for a while, Kristina and her fellow ramen-eating colleagues were without a big box of computing. To solve this problem, Kristina built her own supercomputer from off-the-shelf ARM boards.

Continue reading “Designing a High Performance Parallel Personal Cluster”

Unlock the Phase Locked Loop

If you want a stable oscillator, you usually think of using a crystal. The piezoelectric qualities of quartz means that it can be cut in a particular way that it will oscillate at a very precise frequency. If you present a constant load and keep the temperature stable, a crystal oscillator will maintain its frequency better than most other options.

There are downsides to crystals, though. As you might expect, because crystals are so stable it’s hard to change the frequency much when you want a different one. You can use a trimming capacitor to pull the frequency a little, but to really change frequency, you have to change crystals.

There are other kinds of oscillators that are more frequency agile. However, they aren’t usually as stable. To combine flexibility with crystal-like stability, you can use a Phase Locked Loop (PLL). Many modern systems use direct digital synthesis, but the PLL is a venerable and time-tested technique.

Continue reading “Unlock the Phase Locked Loop”

Oscillator Design by Simulation

[Craig] wanted to build a 19.2 MHz crystal oscillator. He knew he wanted a Pierce oscillator, but he also knew that getting a good design is often a matter of trial and error. He used a 30-day trial of a professional simulation package, Genesys from Keysight, to look at the oscillator’s performance without having to build anything. He not only did a nice write up about his experience, but he also did a great video walkthrough (see below).

The tool generates a sample schematic, although [Craig] deleted it and put his own design into the simulator. By running simulations, he was able to look at the oscillator’s performance. His first cut showed that the circuit didn’t meet the Barkhausen criteria and shouldn’t oscillate. Unfortunately, his prototype did, in fact, oscillate.

Continue reading “Oscillator Design by Simulation”

A Spicy Regenerative Reciever

We recently posted a three-part series about using LTSpice to simulate electronic circuits (one, two, three). You might have found yourself wondering: Can you really simulate practical designs with the program? This quick analysis of [QRP Gaijin’s] minimalist regenerative receiver says “yes”.

Continue reading “A Spicy Regenerative Reciever”