Turning A Laser Cutter Into A 3D Printer With OpenSLS

STL

[Andreas Bastian] has been working on a device that turns an off-the-shelf laser cutter into something capable of selective laser sintering of powdered plastics into 3D objects. He’s put in a lot of work, but now he gets to see the fruits of his labor: he’s successfully printed a few objects out of wax and powdered nylon.

Unlike just about every other inexpensive 3D printer, [Andreas]‘ design doesn’t rely on either squirting plastic onto a bed or curing liquid resin with UV light. Instead, a fine layer of powder is spread over a build platform and melted with a laser. The melted layer drops down, another layer of powder is applied, and the cycle repeats until the part is finished. It’s a challenge to build one of these machines, but [Andreas] had the great idea of retrofitting an off-the-shelf laser cutter, allowing him to focus on the difficult task of designing the powder and piston system.

It’s an extremely interesting project, and most of the custom parts are made from laser cut acrylic: easily cut to size on whatever laser cutter you’re retrofitting with 3D printing capability. There’s a lot of info over on the Wiki, and a few videos showing the sintering process and powder distribution below.

Oh. One last note. [Andreas] developed this while at [Jordan Miller]‘s amazing lab at Rice University. There’s a lot of interesting things happening at this Advanced Manufacturing Research Institute, including bioprinting, DLP resin printers, and using inkjets for cell cultures. Check out this post for a great talk at the Midwest RepRap Festival.

[Read more...]

3D Printed Guitar

electric-guitar-3d-printed-atom-2

We’re not sure how we missed this one, but it definitely deserves a look. Professor of Mechtronics [Olaf Diegel's] 3D printer must go to 12, because he’s printed these incredible electric guitar bodies. You probably won’t be making your own on your filament printer, however, because [Diegel] uses SLS (Selective Laser Sintering) to create the body out of nylon, then he dyes the resulting piece in a two-step process. You can read more about the construction specifics on his website.

And, they’re more than just eye-candy: the guitars sound brilliantly metallic. There are more than enough pictures and videos to keep you occupied on the site, where you can sift through all eight designs to your heart’s content. You’ll want to keep reading for a couple of videos embedded after the break, which feature some demonstrations of the guitar and comparisons to traditional electric guitars, as well as a brief history of its construction and build process.

[Read more...]

Pwdr, the open source powder printer

Meet pwdr, the open source 3D printer that is a complete departure from the RepRaps and Makerbots we’ve come to love.

Instead of squirting plastic onto a build surface, pwdr operates just like the very, very expensive powder printers used in industrial settings. Pwdr uses gypsum, ceramics, and concrete for its raw stock and binds these powder granules together with water deposited from an inkjet cartridge.

Inside pwdr there are two bins, one for storing the raw material and another for building the part. The part to be printed is built one layer at a time, just like your regular desktop printer. After each layer is finished, a counter-rotating drum scrapes the raw material over the build area and another layer is printed.

There are a lot of advantages to pwdr versus the melted plastic method of printing used in the Makerbot; because each build is self-supporting, it’s possible to print objects that just couldn’t be made with an extruder-based printer. Pwdr also supports laser sintering, meaning it’s possible for pwdr to make objects out of ABS, Nylon, and even metal.

Right now, pwdr is still in the very early stages of development, but you can build your own powder printer from the files up on Thingiverse. Check out the video of pwdr printing after the break.

[Read more...]

Building a laser cutter from a weak laser

We covet laser cutters and this diy model with a 1 Watt IR diode may be well within our price range. Most commercially available laser cutters, and some homemade ones, work in the 20-100 Watt ranges, using a CO2 laser. They have more than enough power to cut right through a lot of materials so how can a 1W diode compare? It seems that the weaker laser is still quite powerful right at its focal length, so moving that point along the Z axis will let you burn away a larger depth of material. The test rig seen above uses optical drive components for the three axes and managed to cut a rectangular piece out of the black plastic from a CD case.

This isn’t [Peter's] first try with CNC lasers. He’s the one that’s be working on an open source selective laser sintering platform.

[Thanks Osgeld and Vesanies]

CNC build ditches rods for hardboard

This is a redesigned x-axis for [Peter Jansen's] selective laser sintering rig. We looked in on his SLS project last month and since then he’s been refining the design. The new component uses a rack and pinion system, relying on some Kapton tape to reduce friction for a nice smooth slide. One stepper motor powers the laser-cut gear box with four gears interfacing the sled to the frame for stable and accurate motion. Now he’s just got to work out the math/physics that go into finding the optimal gear ratios as this prototype is just a rough guess. If you’ve got the skills to work it out please lend [Peter] a hand as we’re quite excited with where this is going.

Selective Laser Sintering rig on the cheap

[Peter's] been hard at work designing an affordable Selective Laser Sintering (SLS) 3D printing platform. We first saw his work on this back in April when he was working mostly with acrylic. Now he’s moved on to a design that relies on hardboard which has resulted in a build that comes it at around $20 including the motors.

The design uses a dual z-axis table for the feed stage and the build stage. That is to say, as the powder is fused together by the laser the platform it is on is lowered. Next to this platform, the feed platform is raised, allowing the power to be swept onto the build stage. This setup is moving in the right direction, but we’re still waiting to see what works when it comes to adding the laser and sourcing the powder.

3D laser printer

Working with easy replication in mind, [Peter] is building a 3D laser printer. The majority of the machine is made from laser-cut acrylic held together by parts that are inexpensive and available at your local hardware store. In the end this will lay down a layer of powder, use a laser to fuse the powder together in the outline of your choice, then repeat. This is known as selective laser sintering which is sometimes used in commercial rapid prototyping and, like a lot of other cool technologies, came into existence as a result of a DARPA project.

Sorry folks, this is not a fully functioning prototype yet. [Peter] is searching for the right laser for the job and a source for the powder. If you’ve got a solution please lend a hand and let’s see this project through to completion.

Follow

Get every new post delivered to your Inbox.

Join 96,459 other followers