Smartphone-based Robotic Rover Project goes Open Source

[Aldric Négrier] wrote in to let us know that his DriveMyPhone project has been open sourced. The project is a part telepresence, part remote-controlled vehicle, part robotic rover concept on which he says “I spent more time […] than I should have.” He has shared not just the CAD files, but every detail including tips on assembly. He admits that maybe a robotic chassis for a smartphone might not seem like a particularly new idea today, but it was “an idea with more potential” back in 2010 when he first started.

The chassis is made to cradle a smartphone. Fire up your favorite videoconferencing software and you have a way to see where you’re going as well as hear (and speak to) your surroundings. Bluetooth communications between the phone and the chassis provides wireless control. That being said, this unit is clearly designed to be able to deal with far more challenging terrain than the average office environment, and has been designed to not only be attractive, but to be as accessible and open to repurposing and modification as possible.

Continue reading “Smartphone-based Robotic Rover Project goes Open Source”

Smartphone and IR Line Laser Measure Distance

Measuring the distance using lasers is a mainstay of self-driving vehicles and ambitious robotics projects. The fine folks at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) decided to tackle the problem in an innovative way. [Jason H. Gao] and [Li-Shiuan Peh] used an infra-red (IR) line laser and the camera on a smartphone. Their prototype cost only $49 since they used a smartphone that was on hand. The article reports good results using the device outdoors in direct sunlight which is often a challenge for inexpensive lidars.

The line laser creates a horizontal line that is reflected back to the camera on the phone. The vertical position of the laser on the camera image lets the phone calculate the distance by parallax. To bring out a faint laser reflection, the algorithm compares four images – two with the laser on and two with it off – and subtracts the background. Using a smartphone for this is ideal since it automatically adjusts for light level and can easily be upgraded to a newer phone with a better camera later.

This should be a cheap and easily replicable setup. If you make one of these, let us know. If you need something more refined, check out this post on interfacing the Neato vacuum cleaner’s XV-11a lidar with the Raspberry Pi.

Continue reading “Smartphone and IR Line Laser Measure Distance”

Dry Ice is Nice for Separating Broken Phone Screens

Smartphones are the opium of the people. If you need proof, just watch the average person’s reaction when they break “their precious”. Repairing smartphones has become a huge business. The most often broken item on phones is of course the front glass. In most cases, the screen itself doesn’t break. On newer smartphones, even the touchscreen is safe. The front glass is only a protective lens.

The easiest way to repair a broken front glass is to swap the entire LCD assembly. For an iPhone 6 plus, this will run upwards of $120 USD. However, the glass lens alone is just $10. The problem is that the LCD, digitizer and front glass are a laminated package. Removing them without breaking the wafer thin LCD glass requires great care. The hardest part is breaking down the optical glue securing the glass to the LCD. In the past that has been done with heat. More recently, companies from China have been selling liquid-nitrogen-based machines that cool the assembly. Now immersing a phone screen in -196° C liquid nitrogen would probably destroy the LCD. However, these machines use a temperature controller to keep a surface at -140° C. Just enough to cause the glue to become brittle, but not kill the LCD.

[JerryRigEverything] doesn’t have several thousand dollars for a liquid nitrogen machine, but he does have a $5 block of dry ice. Dry ice runs at -78.5°C. Balmy compared to liquid nitrogen, but still plenty cold. After laying the phone screens down on the ice for a few minutes, [Jerry] was able to chip away the glass. It definitely takes more work than the nitrogen method. Still, if you’re not opening your own phone repair shop, we think this is the way to go.

Broken phones are a cheap and easy way to get high-resolution LCD screens for your projects. The problem is driving them. [Twl] has an awesome project on Hackaday.io for driving phone screens using an FPGA. We haven’t seen it done with iPhone 6 yet though. Anyone up for the challenge?

Continue reading “Dry Ice is Nice for Separating Broken Phone Screens”

Building One Thing In China

Conventional wisdom dictates that if you need to make a million of something, you go to China. China is all about manufacturing, and there aren’t many other places on the planet that have the industry and government-subsidized shipping that will bring your product from China to people around the world. Building a million things in China is one thing, but what about building one thing? How do you create a working prototype of your latest product, and how do you make that prototype look like something that isn’t held together with zip ties and hot glue? The folks at Hatch Manufacturing have a guide for doing just that, and lucky for us, it’s a process that’s easy to replicate in any well-equipped shop.

In this tutorial/case study/PR blitz, Hatch Manufacturing takes on constructing a one-off smartphone. The Huaqiangbei markets in Shenzhen are filled with vendors selling smartphones of all shapes and sizes. If you want a miniature iPhone running Android, that’s no problem. If you want a phone that looks like a 1969 Dodge Charger with the Stars and Bars on top, you can find it in China. But how are all these phones made, and how do you show off a prototype to factories begging for business?

The answer, as is always the case, comes from one-off manufacturing. Building, assembling and reworking PCBs is a well-trodden path whose process could fill several volumes, but for this post, Hatch Manufacturing decided to focus on the plastics that go into a smartphone or tablet.

Once the case or enclosure is designed with a few CAD tools, a block of plastic is run through a mill. After that, it’s a matter of painting and finishing the latest smartphone that will show up in the Chinese market. Putting a professional finish on a block of plastic is something that will look familiar to anyone who has ever assembled a miniature plastic model. There’s priming, airbrushing, sanding, more painting, sanding, wet sanding, and still more sanding. After that comes polishing the plastic part to a fine finish. It is extraordinarily labor intensive work even for a skilled hand with the right equipment.

Once the plastics are done, the PCB, display, battery, and everything else comes together in a completely custom one-off prototype. It’s very similar to how this would be done in any small shop with a benchtop mill and a dozen grades of wet/dry sandpaper. It’s also something anyone can do, provided they have enough practice and patience.

NFC Tags Add Old-School Functionality to New Phone

Back in the day, we had smartphones with physical buttons. Not just power, volume, and maybe another button on the front. Whole, slide-out QWERTY keyboards right on the underside of the phone. It was a lawless wasteland, but for those who yearn for the wild-west days of the late 2000s, [Liviu] has recreated the shortcut buttons that used to exist on the tops of these keyboards for modern-day smartphones.

There were lots of phones that had shortcut keys on their keyboards, but [Liviu] enjoyed using the ones that allowed him to switch between applications (or “apps” as the kids are saying these days) such as the calendar, the browser, or the mail client. To recreate this, he went with a few NFC tags. These devices are easily programmed via a number of apps from your app store of choice, and can be placed essentially anywhere. In order to make them visible to the phone at any time, though, he placed the tags inside a clear plastic case for his phone and can now use them anytime.

If you’ve never used or programmed an NFC tag, this would be a great project to get yourself acquainted with how they operate. Plus, you could easily upgrade this project to allow the tags to do any number of other things. You can take projects like this as far as you want.

Continue reading “NFC Tags Add Old-School Functionality to New Phone”

Avoid Procrastination with this Phone Lock Box

Smart phones are great. So great that you may find yourself distracted from working, eating, conversing with other human beings in person, or even sleeping. [Digitaljunky] has this problem (not surprising, really, considering his name) so he built an anti-procrastination box. The box is big enough to hold a smart phone and has an Arduino-based time lock.

The real trick is making the box so that the Arduino can lock and unlock it with a solenoid. [Digitaljunky] doesn’t have a 3D printer, so he used Fimo clay to mold a custom latch piece. A digital display, a FET to drive the solenoid, and a handful of common components round out the design.

Continue reading “Avoid Procrastination with this Phone Lock Box”

The World’s First Android Smartphone

For one reason or another, someone decided smartphones should have personalities. iPhones have Siri, Windows phones have Cortana, but these are just pieces of software, and not a physical representation of a personality. This may soon change with Sharp, with help from famous Japanese roboticist [Tomotaka Takahashi], releasing RoBoHoN, the first robotic smartphone.

RoBoHoN is by any measure a miniature humanoid robot; it can walk on two legs, it can wave its arms, and it can fit into excessively large pockets. This robot is also a phone, and inside its cold soulless chassis is a 2.0″ LCD, camera, pico projector to display movies and pictures on flat surfaces, and the electronics to turn this into a modern, mid-range smartphone.

In the video for RoBoHoN, this friendly little phone can do everything from hail a cab, add stuff to a shopping list, and be the life of the party. According to Akihabara News, Sharp should be releasing this tiny robot sometime in early 2016 but no word yet on price.

Continue reading “The World’s First Android Smartphone”