33C3: Edible Soft Robotics

Certainly one of the more entertaining talks of the 33rd Chaos Communications Congress was [Kari Love]’s talk on her experiments in mixing food with function. In [Kari]’s talk at the 2016 Hackaday Supercon, she talked extensively about working on soft robotic for NASA. At the 33C3, her focus was twofold: on a fun side project to make mobile robots out of stuff that you can eat, and to examine the process of creative engineering through the lens of a project like this.

homeelliotpendrive33c3-8113-eng-edible_soft_roboticsmp4-shot0005If you look up edible robotics, you get a lot of medical literature about endoscopes that you can swallow, or devices that take samples while they’re inside you. That’s not what [Kari]’s after at all. She’s after a robot that’s made of candy, a yummy machine. And while this is still a work in progress, she demonstrated a video of an all-licorice cable-based actuator.

homeelliotpendrive33c3-8113-eng-edible_soft_roboticsmp4-shot0006_thumbnailBut more than that, she demonstrated all of the materials she’s looked at so far, and the research she’s done. To some extent, the process is the substance of this project, but there’s nothing wrong with some tasty revelations along the way.

This talk was a potpourri of helpful tips and novel facts. For instance, if you’re working in candy robotics, don’t eat your mistakes. That stomach ache that your mom always said you’d get? You will. Did you know that the gummi in gummibears is re-heatable and re-moldable? In addition, of the gels that she made, it was the most delicious. And finally, Pop Rocks don’t have enough CO2 in them to drive pneumatics. Who knew? [Kari] knows. And now you do too.

Continue reading “33C3: Edible Soft Robotics”

Softer Side of Robots is Future of Space

What will next generation space suits look like? Kari Love is making the case that new space suits will exhibit the best in soft robot technology. The problem is that most people don’t really understand much about soft robots, or about space for that matter. Her talk at the Hackaday SuperConference explores the research she has been doing into future generations of space suits. Check out the video below and then join us after the break for more on this topic.

Continue reading “Softer Side of Robots is Future of Space”

Building Pneumatic Actuators With 3D Printed Molds

Pneumatic actuators offer interesting perspectives in applications like soft robotics and interaction design. [Aidan Leitch] makes his own pneumatic actuators from silicone rubber. His actuators contain embedded air channels that can be filled with pressurized air and completely collapse to a flat sheet when no pressure is applied. Continue reading “Building Pneumatic Actuators With 3D Printed Molds”

32C3: My Robot Will Crush You With Its Soft Delicate Hands!

In his talk at 32C3 [Matthew Borgatti] talked both about his company’s work with NASA toward developing robotic spacesuits and helping people with Cerebral Palsy better control their limbs. What do these two domains have in common? “One-size fits all pneumatic exoskeletons.”

[Matthew] makes a tremendously compelling case for doing something new and difficult in robotics — making robotic systems out of squishy, compliant materials. If you think about it, most robots are hard: made of metal and actuated by motors and gears, cables, or (non-compressible) pneumatic fluid. If you want to build suits that play well with soft and squishy people, they’ll need at least a layer of softness somewhere.

But [Matthew]’s approach is to make everything soft. In the talk, he mentions a few biological systems (octopus arms and goat’s feet) that work exactly because they’re soft. Why soft? Because soft spreads force around automatically and accommodates uneven terrain. And this makes it easier on the people who wear robotic suits and on the designers of the robots who don’t need to worry about the fine detail of the ground they’re walking on.

The talk ended up being very short, but there’s a fantastic Q&A at the end. It’s a must-see. And if you can’t get enough of [Matthew] or squishy robots, we’ve covered his robots before and he even had an entry in the Hackaday Prize.

Hackaday Prize Entry: Soft Orthotics

Nearly a million people in the US suffer from CP, a neurological disorder that causes spastic motion in the limbs. One of the biggest quality of life factors for CP sufferers is the ability to use their arms, and that means an expensive and clunky orthotic around their elbow. [Matthew] has a better idea: why not make a soft orthotic?

This is not [Matthew]’s first project with soft robotics. He’s the lead scientist at Super Releaser, the company responsible for the completely soft robotic Glaucus atlanticus and other soft pneumatic robots.

This soft, flexible orthotic exoskeleton is designed for sufferers of chronic movement disorders. Traditional orthotics are expensive, difficult to move, and uncomfortable, but by designing this orthotic to be just as strong but a little more forgiving, these devices minimize most of the problems.

The Neucuff is constructed out of extremely simple materials – just some neoprene, a velcro, and a CO2 cartridge. The problem with bringing this to market, as with all medical devices, is FDA requirements and certifications. That makes the Hackaday Prize an excellent opportunity for [Matthew] and the rest of Super Releaser, as well as anyone else trying to navigate regulatory requirements in order to change the world.

The 2015 Hackaday Prize is sponsored by:

Soft and Squishy Silicone Robotics

This robot arm and gripper is made almost entirely out of silicone. Casting the parts by hand, [Mike] assembled this working, remote controlled robot arm gripper.

We’ll let that sink in for a minute. He turned an oversized tooth-paste tube of silicone caulking… into a pneumatic robotic arm. Holy cow. We’ve seen lots of soft robotics before, but this is some really cool stuff!

You see, [Mike] is actually planning on building an inexpensive prosthetic robot hand using this technology. This was merely a test to see how well he could make silicone based air muscles — we’d say it was pretty successful! Each silicone disk in this robotic appendage has four sealed pockets inside of it. When air flows in through them, they inflate, causing the entire appendage to stretch on one side. With four of these, and varying amounts of pressure, it’s possible to move the appendage in any direction!

Continue reading “Soft and Squishy Silicone Robotics”

Soft Robotics, Silicone Rubber, And Amazing Castings

Most of the robotics projects we see around here are heavy, metallic machines that move with exacting precision with steppers, servos, motors, and electronics. [Matthew] is another breed of roboticist, and created a quadruped robot with no hard moving parts.

[Matthew] calls his creation the Glaucus, after the blue sea slug Glaucus atlanticus. Inside this silicone rubber blob are a series of voids, allowing compressed air to expand the legs, gently inching Glaucus across a table under manual or automatic control.

Even though no one seems to do it, making a few molds for casting on a 3D printer is actually pretty easy. [Matthew] is taking this technique to an extreme, though: First, a mold for the interior pressure bladders are printed, then a positive of this print made in silicone rubber. These silicone molds – four of them, for the left, right, top and bottom – are then filled with wax, and the wax parts reassembled inside the final ‘body’ mold. It’s an amazing amount of work to make just one of these soft robots, but once the molds and masters are made, [Matthew] can pop out a soft robot every few hours or so.

There’s a lot more info on Glaucus over on the official site for the build, and a somewhat simpler ‘compressed air and silicone rubber’ tentacle [Matthew] built showing off the mechanics. Video below.

 

Continue reading “Soft Robotics, Silicone Rubber, And Amazing Castings”