Solar-Powered Prosthetic Skin

One of the biggest problems for prosthetic users is feel. If you’ve ever tried to hold a pen and write with a numb hand, you’ve realised how important feedback is to the motor control equation. Research is ongoing to find ways to provide feedback from prosthetic limbs, in even a basic format.  The human nervous system is a little more complex than just interfacing with the average serial UART. One of the requirements of many feedback systems is power, which usually would involve bulky batteries or some form of supercapacitors, but a British team has developed a way to embed solar cells in a touch-sensitive prosthetic skin.

The skin relies on everyone’s favourite material of the minute, graphene. A thin layer of graphene allows the prosthetic to feed signals back to the user of both temperature and contact pressure. The trick is that the graphene skin is incredibly transparent, reportedly allowing 98% of light on its surface to pass through. It’s then a simple matter of fitting solar panels beneath this skin, and the energy harvested can then be used to power the sensor system.

The team does admit that some power storage will later be required, as it would be difficult for any prosthetic user if their limbs lost all feedback when they walked into a dark room. The idea of one’s arm losing all feeling upon going to bed isn’t particularly appealing. Check out the paper here (paywalled). Video below the break.
We see a lot of great prosthetic projects cross our desk here at Hackaday – like this 3D printed prosthetic hand. Prosthetics definitely matter, so why not build your own and enter it in the 2017 Hackaday Prize?

Continue reading “Solar-Powered Prosthetic Skin”

Portable Battery Bank Only Looks Like a Bomb

If one of the design goals of [wsw4jr]’s portable solar battery bank build was to make something that the local bomb squad would not hesitate to detonate with a water cannon if he leaves it unattended, then mission accomplished.

We kid, but really, the whole thing has a sort of “Spy vs. Spy” vibe that belies its simple purpose. A battery bank is just an array of batteries, some kind of charge controller, and an inverter. The batteries are charged by any means possible – in this case by a small array of solar panels. The mains output of the inverter is used to power whatever doodads you have.

[wsw4jr] didn’t mention of the inverter specs, but from the size of the batteries and the wiring – both of which he admits are not yet up to snuff in his prototype – it’s a safe guess that the intended loads are pretty small.  Tipping the scale at 60 pounds, the unit tends toward the luggable end of the portability scale. Still, this could be a great tool for working out in the field, or maybe even tailgating.

We’ve seen expedient battery banks and emergency power from cordless drill batteries before, but this build is quite a bit more sophisticated. We’ll be watching for updates on this one.

Quick Network Bridge Gets Off-grid Home Back Online

Off-grid living isn’t for everyone, but it has gotten easier in recent years. Cheap solar panels and wind turbines let you generate your own power, and there are plenty of strategies to deal with fuel, water and sanitation. But the one thing many folks find hard to do without – high-speed internet access – has few options for the really remote homestead. [tlankford01] wants to fix that and is working on an open-source mesh network to provide high-speed internet access to off-grid communities.

But first he had to deal with a major problem. With high-speed access provided by a Clearwire wireless network, streaming content to his two flat-screen TVs wasn’t a problem. At least until Sprint bought Clearwire and shut down the service in early November. Another ISP covered his area, but his house lies in a depression out of line of sight of their tower. So he rigged up a bridge between the WiMAX network and his lab. The bridge sits on a hill in sight of the ISP’s tower 3.5 miles away. Solar panels, a charge controller and deep-cycle batteries power everything, and a wireless link down the hill rounds out the build.

This is obviously a temporary solution, and probably wouldn’t last long in winter weather. But it’s working for now, and more importantly it’s acting as proof of concept for a larger mesh system [tlankford01] has in mind. There are plenty of details on what that would look like on his project page (linked above), and it’s worth a look too if you’re interested in off-grid connectivity.

Using The Sun To Beat The Heat

It’s practically May, and that means the sweltering heat of summer is nearly upon us. Soon you’ll be sitting outside somewhere, perhaps by a lake, or fishing from a canoe, or atop a blanket spread out on the grass at a music festival, all the while wishing you had built yourself a solar-powered personal air conditioner.

[Nords] created his from a large insulated beverage vessel. The imbibing spout offers a pre-made path to the depths of said vessel and the heart of this build, the ice water refrigerant. [Nords] fashioned a coil out of copper tubing to use as a heat exchanger and strapped it to the fan that performed best in a noise-benefit analysis.

A small USB-powered submersible pump moves the ice water up through the copper tubing. Both the pump and the fan run off of a 5V solar panel and are connected with a USB Y cable, eliminating the need for soldering. Even if you spend the summer inside, you could still find yourself uncomfortably warm. Provided you have access to ice, you could make this really cool desktop air conditioner.

[via Embedded Lab]

Solar Charge Controller Improves Efficiency of Solar Panels

The simplest and easiest way to charge a battery with a solar panel is to connect the panel directly to the battery. Assuming the panel has a diode to prevent energy from flowing through it from the battery when there’s no sunlight. This is fairly common but not very efficient. [Debasish Dutta] has built a charge controller that addresses the inefficiencies of such a system though, and was able to implement maximum power point tracking using an Arduino.

Maximum power point tracking (MPPT) is a method that uses PWM and a special DC-DC converter to match the impedance of the solar panel to the battery. This means that more energy can be harvested from the panel than would otherwise be available. The circuit is placed in between the panel and the battery and regulates the output voltage of the panel so it matches the voltage on the battery more closely. [Debasish] reports that an efficiency gain of 30-40% can be made with this particular design.

This device has a few bells and whistles as well, including the ability to log data over WiFi, an LCD display to report the status of the panel, battery, and controller, and can charge USB devices. This would be a great addition to any solar installation, especially if you’ve built one into your truck.

This is [Debasish]’s second entry to The Hackaday Prize. We covered his first one a few days ago. That means only one thing: start a project and start documenting it on

A Swamp Cooler for Burning Man


For those who don’t know, Burning Man is a week-long festival in the middle of the Black Rock Desert in Nevada. The event attracts a wide range of creative people from all over the world.

This year, [Jake] is going to bring his homemade evaporative ‘swamp cooler’ to help battle the heat. His design uses a medium-sized shipping container with two large holes cut out of it and two 200mm PC cooling fans embedded into the plastic. The fans blow air from the outside into the bin. Humidifier filters sourced from a local dump are inserted into the middle of the container. The filters acts as an absorbent material to hold melt-water being pumped in from another cooler chest above.

A 30 watt solar panel provides enough power to keep the swamp cooler going while giving enough juice to energize decorative LED interior lights along with some backup batteries for phones and cameras. [Jake]’s system contains a re-purposed A/C computer load center for the solar system. He plans to take temperature and humidity readings at the Burn, bringing back the data from the desert to share with the world.

[Jake] does warn about mold with this system though, but one of the advantages with the filters he chose is that they are pretreated with biocidal compounds. This should help to reduce the chance of mold growth. High humidity conditions are also a disadvantage with this type of cooler, but this is a non-issue in the extremely dry desert of The Playa.

If you plan to go to Burning Man, tell about your energy/cooling preparations. Will you be bringing a system similar to this? If so, let us know.

A table saw to cut solar panels


Steampunker extraordinaire [Jake von Slatt] loves the idea of solar-powered garden lights soaking up the sun’s rays during the day and powering a LED in the evening. Commercially available solar lanterns, as [Jake], you, me, and everyone else on the planet have discovered, are universally terrible and either don’t have solar panels large enough to charge a battery, or only last a year or so. [Jake]’s solution was to make his own solar lanterns and in the process he came up with a great way of cutting his own solar panels.

[Jake] turned to ebay to source 100 3″ x 6″ solar panels for about $30. These are broken panels, factory rejects, but still are able to produce the 0.5 Volts they should. Since these are rather large panels for a solar lantern, [Jake] needed a way to cut these panels into manageable sizes.

To cut the panels, [Jake] made a box to fit a Dremel with a right angle attachment and a port for a vacuum cleaner. There’s a sled for the panels with markings at 40, 80, 75, and 150 mm so the panels can be quickly cut to size with a diamond cutting wheel.

After the boards are cut, [Jake] checks them out with a multimeter to be sure they’re producing the half volt they should. After that, it’s a simple matter of soldering them together and adding them to his solar lanterns.