A longboard speed and distance computer

longboard-speed-distance-comptuer

Why should cyclists have all of the fancy toys? Bicycle computers are very common these days but you won’t find similar hardware for skateboards and longboards. [KobraX22] isn’t taking it lying down. He built this speed and distance computer for his longboard. It doesn’t use very many components and should be easy to install.

The device monitors the rotation of one of the wheels by mounting a reflectance sensor on one of the trucks. It points toward the inside of a wheel which has a piece of black tape on it. Every time the tape passes it prevents the IR led from reflecting back at its paired receiver. This lets the Arduino count the revolutions, which are then paired with the wheel diameter to calculate speed as well as distance traveled. Of course the wheels wear down over time to so frequent riders will have to take new measurements at regular intervals.

[KobraX22] went with a QRB1114 sensor. It costs less than $2 and doesn’t require him to embed a magnet in the wheel like a hall effect sensor setup would have. It also shouldn’t interfere with any other fancy wheel hacks you’ve done, like adding a POV display.

[via Reddit]

Catch neighborhood speeders with your webcam

[John] is keeping the neighborhood safe by keeping an eye out for speeders. Well, he’s really keeping a webcam out for speeders. His technique doesn’t use radar or lasers. He’s processing webcam frames in Python to calculate speed.

It comes down to some basic image manipulation. He firsts gathers the images necessary to make the calculations by using a motion-detecting webcam program called YawCam. The images are analyzed to establish which parts have changed between frames; this gets rid of all the stationary objects. Now the frames can be compared to establish the distance in pixels. By calibrating the shot through measurements of the target area, this data can be directly converted into actual distance. It is then compared with the timestamps from each frame to arrive at speed. This can be used for vehicles on the street like we see above, or more whimsical measurements like pet turtle progress.

DSLR performance measured with audio editing software

[Jaroslav's] camera didn’t have a feature to measure the speed of its response in different modes so he figured out his own method. Using the microphone on his webcam he recorded the sound made by the mirror and shutter movements, then used Audacity to analyze the camera’s performance.

When you get right down to it, this is a fantastic idea. Audacity, the open source audio editing suite, has the ability to show each captured audio track next to each other. That makes it easy for you to precisely align the clips, and has in-build time measuring features with fantastic resolution.

He tested a whole bunch of different settings on a Canon EOS600D DSLR camera. In the image above you can see him comparing performance between different ISO settings. He also looks into different brands and sizes of SD storage cards, as well as the time difference when storing raw image data versus JPEG encoded data.

Slowing a Bopit so the littles ones can play too

[Johnny Halfmoon] wanted to help out his three-year-old who was fascinated by the Bopit electronic game. In its stock condition it’s a bit too fast for the young one, so he cracked it opened and added the option to slow things down.

Above you can see the Bopit Extreme with the top half of the case removed. Although not hard to get open (there’s just 12 screws to remove) the spring-loaded appendages will fly apart when you do. He warns to pay attention at how they go back together.

There’s one axial resistor which affects the running speed of the game. [Johnny] desoldered this, replacing it with a circuit that toggles between that original resistor and a potentiometer. Now, one switch position allows for normal play, the other allows for adjustable speed based on the potentiometer position. Check out the results in the clip after the break.

Looking for some other fun electronic toy hacks? Why not try out this cursing Simon Says?

[Read more...]

Paintball Chronograph

This slick little chronograph can tell you how fast your paintballs are going, as well as what your firing rate is. In this instructible by [Klash69], you can see how to build one for yourself for less than $40. Chronographs themselves aren’t usually too interesting, but we thing he has done a great job here. You have a nice compact package with a big bright display. All it really needs now is a smooth enclosure. As far as the tech details go, he’s using IR sensors spaced 4 inches apart for detection, at the barrel. We’re not experts, but we think this might not work as well on a gun due to muzzle flash, someone who actually knows should let us know in the comments. The brains are a PIC18F13k50 and you can download a full parts list and schematic on the instructible.

You can see a video of it in use after the break.

[Read more...]

Sluggy Wind Speed Sensor

Sometimes when we look at a hack, its to see how someone chose those parts for the project. In this case, it would have been hard to see it coming. [Janne Jansson] decided to combine a set of measuring cups, a hacked Linksys NSLU2 NAS, and a PS/2 Mouse together to make a self-contained Wind Speed Sensor for his roof. The measuring cups act as wind catchers, which in turns drives the rotation of one of the mouse ball sensors. This data is then logged and transmitted by the NSLU2. The NSLU2 is running a custom Linux based firmware, similar to how OpenWRT works for wireless routers.

To calibrate the device, he also made the best logical choice: to duct tape it to the hood of his car along with a much more expensive wind sensor and use that data to make his own device as accurate as possible. When placed atop his house with a 1500VA 220V UPS, the device managed 250 days of uptime before meeting its demise. Those 250 days also included 5 days of being frozen solid, yet still transmitting (somewhat meaningless) data. All of the relevant code and build instructions are available, for those of you with similar parts to spare.

Maze-solving robo mouse

Looking for something to build that will be challenging and interesting to laypersons at the same time? Take some inspiration from this maze-solving robot mouse. It take the idea of a line-following robot, and makes it infinitely more cool. The tiny rover uses sensors to map out a physical maze. Once it figure it out, you put it back at the beginning for a speed run to the finish. We’ve embedded the video below showing the whole process. Looks like the speed-run is completed in just under five seconds.

Now that you’ve enjoyed a virtual mouse in a real maze, check out a real mouse in a virtual maze.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,423 other followers