Hackaday Prize Entry : Impact – A Head Concussion Monitor

A lot of young athletes who get concussions each year go undiagnosed, leading to brain injury. [Hunter Scott] is working on a device called Impact to help detect these events early. According to this article which discusses the issue of concussion recognition and evaluation, “Early identification on the sports sideline of suspected concussion is critical because, in most cases, athletes who are immediately removed from contact or collision sports after suffering a concussion or other traumatic brain injury will recover without incident fairly quickly. If an athlete is allowed to keep playing, however, their recovery is likely to take longer, and they are at increased risk of long-term problems”

The device is a dime sized disk, which has an ATTiny85 microcontroller, memory to hold data, an accelerometer and a LED which gets activated when the preset impact threshold is breached, all driven by a coin cell. This small size allows it to be easily embedded in sports equipment such as helmets. At the end of a game, if the LED is blinking, the player is then screened for a concussion. For additional analysis, data stored on the on-board memory can be downloaded. This can be done by a pogo-pin based docking station, which is what [Hunter Scott] is still working on.

He’s having a functional problem that needs fixing. The ATTiny85 cannot be programmed with the accelerometer populated. He first needs to populate the ATTiny85, program it, and then populate the accelerometer. He’s working in fixing that, but if you have any suggestions, chime in on the comments below. We’d like to add that [Hunter] is a prolific hacker. His project, the Ultra-wideband radio module was a Hackaday Prize semi-finalist last year.

The 2015 Hackaday Prize is sponsored by:

Improving sports performance with a Kinect

As a recent Mech E grad, [Alessandro Timmi] knows a lot about moving bodies. His thesis, Virtual Sensei, aims to quantify those movements for better coaching and training in martial arts.

Virtual Sensei uses a Kinect for motion capture during training. From there, the skeleton recorded by the Kinect has a little bit of processing applied and the speed of the fists is calculated. Check out the demo vid for a much better explanation of what Virtual Sensei can do.

Considering the number of sports that require precise alignment of the skeleton and timing of certain movements, we’re thinking this could be the breakout (non-video game) app to get the Kinect into the wild. Golf pros would love to record the swings of their students to make sure their shoulders are aligned.

Most of the Kinect hacks we’ve seen are either robot builds with a few 3D scanners and virtual wardrobes thrown into the mix. Virtual Sensei is a pretty impressive piece of software and with a few additional sports could make a killing.

Check out the freakin awesome animated FAQ and a demo video below.

Continue reading “Improving sports performance with a Kinect”